CORDIS
EU research results

CORDIS

English EN
Photonically fused molecular materials

Photonically fused molecular materials

Objective

Molecular materials are ubiquitous, encompassing smart phone displays, plastic electronics and the molecular machinery of photosynthesis. Many of these remarkable uses depend on interactions between the molecules. Until now these interactions have been electric in character, and have been dictated by how electric charge is distributed over the molecules. PHOTMAT will transform the world of molecular materials by adding a new ingredient – photons. I will fuse photons and molecules together to create new hybrid states – part molecule and part photon – that are dramatically different from those of the constituent molecules and photons. The idea of coupling molecules with photons is a radical new approach with implications that reach across physics, quantum information, chemistry, materials science, nanotechnology and biology.

I propose a pioneering research programme that will catalyse the transition from embryonic early results to the creation of a new conceptual framework to unveil a new frontier in nanoscience and nanotechnology. We will perform new experiments that will provide clear proof-of-principle demonstrations of the incredible opportunities opened up by coupling molecules with photons. As examples, we will show how the range over which energy (excitons) can be transport may be extended by a factor of 1000, and we will show how the process of photosynthesis can be modified and controlled. This research has enormous potential, from transforming artificial photosynthesis for clean fuel production to inspiring a new generation of molecular metamaterials.

My goal is to explore the rich array of possibilities that arise when photons are made an integral part of molecular materials. At present much of the underlying physics is unclear and controversial. I will resolve the important open questions and show how photonic coupling of molecules leads to new molecular materials, new ways to control chemical and biological processes, and a new type of nanophotonics.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Host institution

THE UNIVERSITY OF EXETER

Address

The Queen'S Drive Northcote House
Ex4 4qj Exeter

United Kingdom

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 2 447 699

Beneficiaries (1)

Sort alphabetically

Sort by EU Contribution

Expand all

THE UNIVERSITY OF EXETER

United Kingdom

EU Contribution

€ 2 447 699

Project information

Grant agreement ID: 742222

Status

Ongoing project

  • Start date

    1 September 2017

  • End date

    31 August 2022

Funded under:

H2020-EU.1.1.

  • Overall budget:

    € 2 447 699

  • EU contribution

    € 2 447 699

Hosted by:

THE UNIVERSITY OF EXETER

United Kingdom