CORDIS
EU research results

CORDIS

English EN
Training network for COmputational Spectroscopy In Natural sciences and Engineering

Training network for COmputational Spectroscopy In Natural sciences and Engineering

Objective

During the last two decades, ab-initio Quantum Chemistry has become an important scientific pillar in chemical research. For electronic ground states, well established theoretical research tools exist, that can be applied by scientists in order to guide experimental interpretation and synthesis design. For optical properties and excited electronic states, dominated by electron correlation, computational tools are lagging behind and are currently missing the accuracy needed in order to have predictive power. However, such tools are urgently required for the fundamental understanding of natural photo-initiated processes as well as organic optical devices.
The COSINE ETN will, on one hand, devise novel theoretical tools and computational codes rooted in Electronic Structure Theory for the investigation of organic photochemistry with the aim of enabling accurate simulation of spectroscopic experiments on the computer. To this end a complementary series of tools, rooted in Coupled Cluster, Algebraic Diagrammatic Construction, Density Functional Theory, as well as selected multi-reference methods,
will be developed, also accounting for the effects of external environments.
On the other hand, COSINE will train the next generation of computational chemists in the most modern state-of-the-art high performance computing techniques for these purposes. The complementary expertise of all participating scientists/institutions, covering all fields required, from Molecular Mechanics to Response Theory, single- and multi-reference methods as well as time-dependent Schrödinger equation, will be exploited and will assure the feasibility and the success of the proposed training. The research which is proposed within COSINE is a quintessential prerequisite for genuine progress in the field of computational spectroscopy on molecules relevant in nature and/or engineering, and in particular for rationally designing new photo-active materials.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Coordinator

RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG

Address

Seminarstrasse 2
69117 Heidelberg

Germany

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 498 432,96

Participants (8)

Sort alphabetically

Sort by EU Contribution

Expand all

KUNGLIGA TEKNISKA HOEGSKOLAN

Sweden

EU Contribution

€ 527 318,64

LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN

Germany

EU Contribution

€ 498 432,96

SCUOLA NORMALE SUPERIORE

Italy

EU Contribution

€ 516 122,64

SYDDANSK UNIVERSITET

Denmark

EU Contribution

€ 290 081,88

ECOLE NATIONALE SUPERIEURE DE CHIMIE DE PARIS

France

ECOLE NATIONALE SUPERIEURE DE CHIMIE DE PARIS

France

EU Contribution

€ 262 875,60

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU

Norway

EU Contribution

€ 572 550,48

DANMARKS TEKNISKE UNIVERSITET

Denmark

EU Contribution

€ 580 163,76

Partners (8)

Sort alphabetically

Expand all

ELETTRA - SINCROTRONE TRIESTE SCPA

Electromagnetic Geoservices ASA

EXACT LAB SRL

NVIDIA GmbH

DELL S.P.A.

BioTools, Inc.

PDC Center for High-Performance Computing , KTH

Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste

Project information

Grant agreement ID: 765739

Status

Ongoing project

  • Start date

    1 January 2018

  • End date

    31 December 2021

Funded under:

H2020-EU.1.3.1.

  • Overall budget:

    € 3 745 978,92

  • EU contribution

    € 3 745 978,92

Coordinated by:

RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG

Germany