Skip to main content

Beyond Planck -- delivering state-of-the-art observations of the microwave sky from 30 to 70 GHz for the next decade

Obiettivo

The detection of primordial gravity waves created during the Big Bang ranks among the greatest potential intellectual achievements in modern science. During the last few decades, the instrumental progress necessary to achieve this has been nothing short of breath taking. However, from the latest ultra-sensitive experiments such as BICEP2 and Planck, it is clear that instrumental sensitivity alone will not be sufficient to make a robust detection of gravitational waves. Contamination in the form of astrophysical radiation from the Milky Way, for instance thermal dust and synchrotron radiation, obscures the cosmological signal by orders of magnitude. Even more critically are second-order interactions between this radiation and the instrument characterization itself that lead to a highly non-linear and complicated problem.

We propose a ground-breaking solution to this problem that allows for joint estimation of cosmological parameters, astrophysical components, and instrument specifications. The engine of this method is called Gibbs sampling, which we have already applied extremely successfully to basic CMB component separation. The new and critical step is to apply this method to raw time-ordered observations observed directly by the instrument, as opposed to pre-processed frequency maps. While representing a ~100-fold increase in input data volume, this step is unavoidable in order to break through the current foreground-induced systematics floor. We will apply this method to the Planck LFI observations, and deliver a new set of legacy Planck LFI maps that are robust with respect to instrumental systematics and astrophysical foregrounds. We will also combine these data with similar observations from WMAP (23-94 GHz) and C-BASS (5 GHz), to produce the world’s best measurements of polarized synchrotron emission at CMB frequencies. These data products and mehods will play a central role in designing and optimizing future inflationary gravitational wave experiments.

Meccanismo di finanziamento

RIA - Research and Innovation action

Coordinatore

UNIVERSITETET I OSLO
Contribution nette de l'UE
€ 617 812,50
Indirizzo
Problemveien 5-7
0313 Oslo
Norvegia

Mostra sulla mappa

Regione
Norge Oslo og Viken Oslo
Tipo di attività
Higher or Secondary Education Establishments
Altri finanziamenti
€ 89 555,00

Partecipanti (4)

UNIVERSITA DEGLI STUDI DI MILANO
Italia
Contribution nette de l'UE
€ 261 750,00
Indirizzo
Via Festa Del Perdono 7
20122 Milano

Mostra sulla mappa

Regione
Nord-Ovest Lombardia Milano
Tipo di attività
Higher or Secondary Education Establishments
Altri finanziamenti
€ 40 825,00
ISTITUTO NAZIONALE DI ASTROFISICA
Italia
Contribution nette de l'UE
€ 234 610,00
Indirizzo
Viale Del Parco Mellini 84
00136 Roma

Mostra sulla mappa

Regione
Centro (IT) Lazio Roma
Tipo di attività
Research Organisations
Altri finanziamenti
€ 11 267,50
HELSINGIN YLIOPISTO
Finlandia
Contribution nette de l'UE
€ 85 225,00
Indirizzo
Yliopistonkatu 3
00014 Helsingin Yliopisto

Mostra sulla mappa

Regione
Manner-Suomi Helsinki-Uusimaa Helsinki-Uusimaa
Tipo di attività
Higher or Secondary Education Establishments
Altri finanziamenti
€ 18 750,00
PLANETEK HELLAS ETAIREIA PERIORISMENIS EFTHYNIS YPIRESIES CHARTOGRAFISIS MESO DORYFOROU
Grecia
Contribution nette de l'UE
€ 300 000,00
Indirizzo
Leoforos Kifissias 44
15125 Maroussi

Mostra sulla mappa

PMI

L’organizzazione si è definita una PMI (piccola e media impresa) al momento della firma dell’accordo di sovvenzione.

Regione
Βόρειος Τομέας Αθηνών Aττική Αττική
Tipo di attività
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Altri finanziamenti
€ 0,00