CORDIS
EU research results

CORDIS

English EN

Cloud-cloud interaction in convective precipitation

Objective

State-of-the-art simulations and observations highlight the self-organization of convective clouds. Our recent work shows two aspects: these clouds are capable of unexpected increase in extreme precipitation when temperature rises; interactions between clouds produce the extremes. As clouds interact, they organize in space and carry a memory of past interaction and precipitation events. This evidence reveals a severe shortcoming of the conventional separation into "forcing" and "feedback" in climate model parameterizations, namely that the "feedback" develops a dynamics of its own, thus driving the extremes. The major scientific challenge tackled in INTERACTION is to make a ground-breaking departure from the established paradigm of "quasi-equilibrium" and instantaneous convective adjustment, traditionally used for parameterization of "sub-grid-scale processes" in general circulation models. To capture convective self-organization and extremes, the out-of-equilibrium cloud field must be described. In INTERACTION, I will produce a conceptual model for the out-of-equilibrium system of interacting clouds. Once triggered, clouds precipitate on a short timescale, but then relax in a "recovery" state where further precipitation is suppressed. Interaction with the surroundings occurs through cold pool outflow,facilitating the onset of new events in the wake. I will perform tailored numerical experiments using cutting-edge large-eddy simulations and very-high-resolution observational analysis to determine the effective interactions in the cloud system. Going beyond traditional forcing-and-feedback descriptions, I emphasize gradual self-organization with explicit temperature dependence. The list of key variables of atmospheric water vapor, temperature and precipitation must therefore be amended by variables describing organization. Capturing the self-organization of convection is essential for understanding of the risk of precipitation extremes today and in a future climate.

Host institution

KOBENHAVNS UNIVERSITET

Address

Norregade 10
1165 Kobenhavn

Denmark

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 1 314 800

Beneficiaries (1)

Sort alphabetically

Sort by EU Contribution

Expand all

KOBENHAVNS UNIVERSITET

Denmark

EU Contribution

€ 1 314 800

Project information

Grant agreement ID: 771859

Status

Ongoing project

  • Start date

    1 July 2018

  • End date

    30 June 2023

Funded under:

H2020-EU.1.1.

  • Overall budget:

    € 1 314 800

  • EU contribution

    € 1 314 800

Hosted by:

KOBENHAVNS UNIVERSITET

Denmark