CORDIS
EU research results

CORDIS

English EN

Advanced Characterization of Organic-rich Shales using Vapour Adsorption

Project information

Grant agreement ID: 793128

Status

Grant agreement terminated

  • Start date

    1 August 2018

  • End date

    31 July 2020

Funded under:

H2020-EU.1.3.2.

  • Overall budget:

    € 195 454,80

  • EU contribution

    € 195 454,80

Coordinated by:

THE UNIVERSITY OF NOTTINGHAM

United Kingdom

Objective

The overarching goal of this proposal is to develop a novel experimental framework for quantifying the total specific surface area of organic matter and the wettability of pores in shales, and interpreting the displacement mechanism between gas and water by using a selective adsorption approach coupled with independent verified electron microscope measurements. The overarching goal of the project will be achieved through the following scientific objectives. First, a 3D structural model of the hydrophobic and hydrophilic site distribution in shales at around 50 nm resolution by combining FIB-SEM and high resolution TEM will be developed. This will provide an independent verification for later site-selective adsorption studies. Second, a vapour adsorption method by researching and verifying the most suitable probing vapours and the most reliable measuring approach will be developed. This will create a novel experimental framework for quantifying the total specific surface area of organic matter and the wettability of pores in shales, which will be verified by a previously-built 3D structural model. Last, the displacement mechanism between water and gas will be disclosed by determining the influence of hydrophobic and hydrophilic sites in shales using sequential adsorption and in situ NMR. This will be the essential theoretical part of the work for developing next generation enhanced gas recovery techniques through non-aqueous fluid injection and heat stimulation. The outputs of this project will disclose the chemical/wetting nature of pore systems in shales, which will be essential for improving current fluid transport models in shales by considering surface chemistry properties and developing the next generation of environmentally-friendly shale gas recovery technology through non-aqueous fluid injection and heat stimulation in order to serve shale gas development in the EU, U.S. and China.

Coordinator

THE UNIVERSITY OF NOTTINGHAM

Address

University Park
Ng7 2rd Nottingham

United Kingdom

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 195 454,80

Project information

Grant agreement ID: 793128

Status

Grant agreement terminated

  • Start date

    1 August 2018

  • End date

    31 July 2020

Funded under:

H2020-EU.1.3.2.

  • Overall budget:

    € 195 454,80

  • EU contribution

    € 195 454,80

Coordinated by:

THE UNIVERSITY OF NOTTINGHAM

United Kingdom