Skip to main content
European Commission logo print header

Relativistic and Dynamic effects in Computational NMR Spectroscopy of transition-metal complexes

Objetivo

The current proposal aims to established a computational protocol for the rational calculation of NMR parameters in transition-metal complexes by accurately taking into consideration relativistic effects and conformational dynamics. Despite the advances attained in theoretical chemistry methods, the calculation of NMR parameters is not always an easy task. The accuracy with which the shift constants can be obtained depends on several factors and a protocol for these calculations is not always well established and understood. This applies particularly to systems containing heavy element(s) or molecules of open-shell nature. To successfully determine the NMR parameters, the proposed protocol involves the use of all-electron two- and four-component relativistic quantum methods and ab-initio molecular dynamic simulations for the inclusion of the relativistic and solvent effects, respectively. The transition-metal complexes chosen for this project are of high importance in biomedicine, biotechnology, and industrial processes. As the target complexes need to be tested experimentally, this project is multidisciplinary and involves major international collaborations. This project would have a great positive impact on the applicant’s early stage researcher career, identifying her as one of the key players in the opening of a new pathway into computational NMR spectroscopy for systems involving transition-metals.

Régimen de financiación

MSCA-IF-EF-ST - Standard EF

Coordinador

UNIVERSITETET I OSLO
Aportación neta de la UEn
€ 196 400,40
Dirección
PROBLEMVEIEN 5-7
0313 Oslo
Noruega

Ver en el mapa

Región
Norge Oslo og Viken Oslo
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 196 400,40