Skip to main content
European Commission logo print header

Force Fields in Redox Enzymatic Catalysis

Ziel

Fields4CAT aims to identify the nature and directionality of the driving forces in a redox enzyme that govern the catalytic chemical process.
Industrial bio-manufacturing is one of the pillars of today’s world economy making its way to a sustainable development. Redox enzymes catalyze the most demanding chemical reactions under mild conditions, such as the oxy-functionalization of non-activated hydrocarbons, which usually requires harsh reaction conditions. Enzyme Biotechnology has greatly progressed thanks to rational mutagenesis schemes that draw upon the static X-ray structural information. The high complexity of enzymatic catalysis has, however, hampered its development because a single point mutation near the active site can affect several relevant parameters at the same time, obscuring the interpretation and constraining the rational design of technological biocatalysts.
Fields4CAT proposes dissecting the relevant forces exerted over an individual catalytic active site in its wild-type state, and then using the resulting forces map to design enzyme/metal platforms with enhanced capabilities. To this aim, it develops in 3 blocks organized in a step-wise fashion: (i) block 1 sets up a electrochemical multi-stimuli single-protein toolbox (Ec-SPT) with capabilities to trap individual proteins in a nanoscale tunnelling junction and subject them to a variety of force stimuli, i.e. mechanical, electrostatic and magnetic. (ii) Block 2 designs the chemical electrical plugs that will specifically connect the enzyme to the junction electrodes with precise controlled orientation. (iii) Block 3 characterizes the single-protein electrical signatures of the enzyme activity and quantifies the catalytic effect of the different force stimuli along the vertical junction axis.
Fields4CAT will identify new guidelines to bioengineer a redox enzyme/metal platform with tuned catalytic activity, bringing about new breakthroughs in the future of Bio-Catalysis.

Gastgebende Einrichtung

KING'S COLLEGE LONDON
Netto-EU-Beitrag
€ 1 998 700,00
Adresse
STRAND
WC2R 2LS London
Vereinigtes Königreich

Auf der Karte ansehen

Region
London Inner London — West Westminster
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 1 998 700,00

Begünstigte (2)