CORDIS
EU research results

CORDIS

English EN
organisation of CLoUdS, and implications for Tropical cyclones and for the Energetics of the tropics, in current and in a waRming climate

organisation of CLoUdS, and implications for Tropical cyclones and for the Energetics of the tropics, in current and in a waRming climate

Objective

Few geophysical phenomena are as spectacular as tropical cyclones, with their eye surrounded by sharp cloudy eyewalls. There are other types of spatially organised convection (convection refers to overturning of air within which clouds are embedded), in fact organised convection is ubiquitous in the tropics. But it is still poorly understood and poorly represented in convective parameterisations of global climate models, despite its strong societal and climatic impact. It is associated with extreme weather, and with dramatic changes of the large scales, including drying of the atmosphere and increased outgoing longwave radiation to space. The latter can have dramatic consequences on tropical energetics, and hence on global climate. Thus, convective organisation could be a key missing ingredient in current estimates of climate sensitivity from climate models.

CLUSTER will lead to improved fundamental understanding of convective organisation to help guide and improve convective parameterisations. It is closely related to the World Climate Research Programme (WCRP) grand challenge: Clouds, circulation and climate sensitivity. Grand challenges identify areas of emphasis in the coming decade, targeting specific barriers preventing progress in critical areas of climate science.

Until recently, progress on this topic was hindered by high numerical cost and lack of fundamental understanding. Advances in computer power combined with new discoveries based on idealised frameworks, theory and observational findings, make this the ideal time to determine the fundamental processes governing convective organisation in nature. Using a synergy of theory, high-resolution cloud-resolving simulations, and in-situ and satellite observations, CLUSTER will specifically target two feedbacks recently identified as being essential to convective aggregation, and assess their impact on tropical cyclones, large-scale properties including precipitation extremes, and energetics of the tropics.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

Address

Rue Michel Ange 3
75794 Paris

France

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 1 078 021

Beneficiaries (1)

Sort alphabetically

Sort by EU Contribution

Expand all

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

France

EU Contribution

€ 1 078 021

Project information

Grant agreement ID: 805041

Status

Ongoing project

  • Start date

    1 June 2019

  • End date

    31 May 2024

Funded under:

H2020-EU.1.1.

  • Overall budget:

    € 1 078 021

  • EU contribution

    € 1 078 021

Hosted by:

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

France