Skip to main content

Secure, Private, Efficient Multiparty Computation

Objective

MPC is a cryptographic technique that allows a set of mutually distrusting parties to compute any joint function of their private inputs in a way that preserves the confidentiality of the inputs and the correctness of the result. Examples of MPC applications include secure auctions, benchmarking, privacy-preserving data mining, etc.

In the last decade, the efficiency of MPC has improved significantly, especially with respect to evaluating functions expressed as Boolean and arithmetic circuits. These advances have allowed several companies worldwide to implement and include MPC solutions in their products.

Unfortunately, it now appears (and it’s partially confirmed by theoretical lower bounds) that we have reached a wall with respect to possible optimizations of current building blocks of MPC, which prevents MPC to be used in critical large-scale applications. I therefore believe that a radical paradigm-shift in MPC research is needed in order to make MPC truly practical.

With this project, I intend to take a step back, challenge current assumptions in MPC research and design novel MPC solutions. My hypothesis is that taking MPC to the next level requires more realistic modelling of the way that security, privacy and efficiency are defined and measured. By combining classic MPC techniques with research in neighbouring areas of computer science I will fulfill the aim of the project and in particular:
1) Understand the limitations of current abstract models for MPC and refine them to more precisely capture real world requirements in terms of security, privacy and efficiency.
2) Use the new models to guide the developments of the next generation of MPC protocols, going beyond current performances and therefore enabling large-scale applications.
3) Investigate the necessary privacy-utility trade-offs that parties undertake when participating in distributed computations and define MPC functionalities that encourage cooperation for rational parties.

Field of science

  • /natural sciences/mathematics/pure mathematics/arithmetic
  • /natural sciences/computer and information sciences/data science/data mining

Call for proposal

ERC-2018-STG
See other projects for this call

Funding Scheme

ERC-STG - Starting Grant

Host institution

AARHUS UNIVERSITET
Address
Nordre Ringgade 1
8000 Aarhus C
Denmark
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 1 495 902

Beneficiaries (1)

AARHUS UNIVERSITET
Denmark
EU contribution
€ 1 495 902
Address
Nordre Ringgade 1
8000 Aarhus C
Activity type
Higher or Secondary Education Establishments