CORDIS
EU research results

CORDIS

English EN
Live Tapings of Material Formation: Unravelling formation mechanisms in materials chemistry through Multimodal X-ray total scattering studies

Live Tapings of Material Formation: Unravelling formation mechanisms in materials chemistry through Multimodal X-ray total scattering studies

Objective

With this proposal, I want to develop a new, multimodal approach to in situ X-ray scattering studies to unravel formation mechanisms of the solid state. The aim of the project is to develop a unified view of metal oxide nucleation processes on the atomic scale: From precursor complexes over pre-nucelation clusters to the final crystalline particle.
The development of new materials relies on our understanding of the relation between material structure, properties and synthesis. While the intense focus on ‘materials by design’ have made it possible to predict the properties of many materials given an atomic arrangement, actually knowing how to synthesize it is a completely different story. Material synthesis methods are to a large degree developed by extensive parameter studies based on trial-and-error experiments. Specifically, our knowledge of particle nucleation is lacking, as even non-classical views on nucleation such as the concept of pre-nucleation clusters do not apply an atomistic view of the formation process. Here, I want to use new methods in X-ray total scattering and Pair Distribution Function analysis to follow nucleation processes to establish the framework needed for predictive material synthesis. One of the large challenges in studying nucleation is the lack of a characterization method that can give structural information on materials without long-range order. I have demonstrated that time-resolved X-ray total scattering gives new possibilities for following structural changes in a synthesis, and the use of total scattering has opened for a new view on material formation. However, the complexity of the structures involved in nucleation processes is too large to obtain sufficient information from X-ray total scattering alone. Here, I will combine X-ray total scattering data with complementary techniques using a new multimodal approach for complex modelling analysis, providing a unifying view on material nucleation.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Host institution

KOBENHAVNS UNIVERSITET

Address

Norregade 10
1165 Kobenhavn

Denmark

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 1 493 269

Beneficiaries (1)

Sort alphabetically

Sort by EU Contribution

Expand all

KOBENHAVNS UNIVERSITET

Denmark

EU Contribution

€ 1 493 269

Project information

Grant agreement ID: 804066

Status

Ongoing project

  • Start date

    1 February 2019

  • End date

    31 January 2024

Funded under:

H2020-EU.1.1.

  • Overall budget:

    € 1 493 269

  • EU contribution

    € 1 493 269

Hosted by:

KOBENHAVNS UNIVERSITET

Denmark