CORDIS
EU research results

CORDIS

English EN
Dissipative self-assembly in synthetic systems: Towards life-like materials

Dissipative self-assembly in synthetic systems: Towards life-like materials

Objective

"Living organisms are sophisticated self-assembled structures that exist and operate far from thermodynamic equilibrium and, as such, represent the ultimate example of dissipative self-assembly. They remain stable at highly organized (low-entropy) states owing to the continuous consumption of energy stored in ""chemical fuels"", which they convert into low-energy waste. Dissipative self-assembly is ubiquitous in nature, where it gives rise to complex structures and properties such as self-healing, homeostasis, and camouflage. In sharp contrast, nearly all man-made materials are static: they are designed to serve a given purpose rather than to exhibit different properties dependent on external conditions. Developing the means to rationally design dissipative self-assembly constructs will greatly impact a range of industries, including the pharmaceutical and energy sectors.

The goal of the proposed research program is to develop novel principles for designing dissipative self-assembly systems and to fabricate a range of dissipative materials based on these principles. To achieve this goal, we will employ novel, unconventional approaches based predominantly on integrating organic and colloidal-inorganic building blocks.

Specifically, we will (WP1) drive dissipative self-assembly using chemical reactions such as polymerization, oxidation of sugars, and CO2-to-methanol conversion, (WP2) develop new modes of intrinsically dissipative self-assembly, whereby the activated building blocks are inherently unstable, and (WP3&4) conceive systems whereby self-assembly is spontaneously followed by disassembly.

The proposed studies will lead to new classes of ""driven"" materials with features such as tunable lifetimes, time-dependent electrical conductivity, and dynamic exchange of building blocks. Overall, this project will lay the foundations for developing new synthetic dissipative materials, bringing us closer to the rich and varied functionality of materials found in nature."
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Host institution

WEIZMANN INSTITUTE OF SCIENCE

Address

Herzl Street 234
7610001 Rehovot

Israel

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 1 999 572

Beneficiaries (1)

Sort alphabetically

Sort by EU Contribution

Expand all

WEIZMANN INSTITUTE OF SCIENCE

Israel

EU Contribution

€ 1 999 572

Project information

Grant agreement ID: 820008

Status

Ongoing project

  • Start date

    1 January 2019

  • End date

    31 December 2023

Funded under:

H2020-EU.1.1.

  • Overall budget:

    € 1 999 572

  • EU contribution

    € 1 999 572

Hosted by:

WEIZMANN INSTITUTE OF SCIENCE

Israel