Project description DEENESFRITPL Improved in vivo diagnostics Medical diagnostic procedures employ a variety of different technologies, including magnetic resonance imaging (MRI). To minimise the exposure time and radiation risk of such procedures, scientists of the EU-funded PATHOS project are working to optimise the spectral and spatial resolution of MRI. Given that biological systems are complex and noisy environments, researchers are developing novel NMR-based probing configurations and protocols for enhanced intra-molecule and intra-tissue sensing. These novel tools will help unveil biochemical features otherwise masked by tissue heterogeneity, while advanced data processing will control the noise generated by complex biological systems. Show the project objective Hide the project objective Objective We plan to develop a radically new technology for the sensing of bio-systems and in-vivo diagnostics of biomedical conditions using hitherto unexploited tools of unconventional complex-system dynamical control and information sampling/processing. They will be founded on groundbreaking concepts and challenging experiments, with the following aims: (a) Magnetic-resonance imaging (MRI) and optically-detected magnetic-resonance (ODMR) sensing will be dramatically improved by orders of magnitude through highly selective cooling/suppression of thermal noisy background in-vivo with unprecedented spectral and spatial (subnano- or submicron-) resolution. It will be based on so far unemployed (but conceptually proven) stochastic (anti-) Zeno effects and collective-spin cooling pioneered by the partners of this very interdisciplinary consortium. (b) Development of novel probing configurations and protocols: NMR intra-molecule/intra-tissue sensing and intra-cell NV-center thermometry based on dynamical control being aimed at unravelling of hitherto invisible biochemical activity features masked by inhomogeneous broadening. (c) Advanced sensing-data processing, including high-order correlation spectroscopy – innovative strategies that seek to exploit dynamically controlled/modified noise in bio-systems as a source of previously untapped information on physiological (temporal) processes and anatomical (structural) detail. This information will be obtained by treating bio-systems as complex, noisy “environments” through novel probing/estimation procedures and compressed (sparse) imagery of the spectrally and spatially structured “environment”, but reducing drastically their complexity by dynamically controlling the relevant information encoded by key noise parameters. The overarching goal will be to substantially enrich the spatial and spectral information content and robustness of diverse medical diagnostic procedures and thereby minimize the exposure time/irradiation dosage. Fields of science engineering and technologyenvironmental biotechnologybiosensingnatural sciencesphysical sciencesopticsspectroscopy Programme(s) H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET) Main Programme H2020-EU.1.2.1. - FET Open Topic(s) FETOPEN-01-2018-2019-2020 - FET-Open Challenging Current Thinking Call for proposal H2020-FETOPEN-2018-2020 See other projects for this call Sub call H2020-FETOPEN-2018-2019-2020-01 Funding Scheme RIA - Research and Innovation action Coordinator UNIVERSITA DEGLI STUDI DI FIRENZE Net EU contribution € 536 250,00 Address Piazza san marco 4 50121 Florence Italy See on map Region Centro (IT) Toscana Firenze Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Participants (4) Sort alphabetically Sort by Net EU contribution Expand all Collapse all ISTITUTO NAZIONALE DI RICERCA METROLOGICA Italy Net EU contribution € 506 250,00 Address Strada delle cacce 91 10135 Torino See on map Region Nord-Ovest Piemonte Torino Activity type Research Organisations Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 WEIZMANN INSTITUTE OF SCIENCE Israel Net EU contribution € 500 000,00 Address Herzl street 234 7610001 Rehovot See on map Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 THE HEBREW UNIVERSITY OF JERUSALEM Israel Net EU contribution € 512 500,00 Address Edmond j safra campus givat ram 91904 Jerusalem See on map Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 TECHNISCHE UNIVERSITAT DORTMUND Germany Net EU contribution € 512 500,00 Address August schmidt strasse 4 44227 Dortmund See on map Region Nordrhein-Westfalen Arnsberg Dortmund, Kreisfreie Stadt Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00