CORDIS
EU research results

CORDIS

English EN
Comprehensive Mechanisms of Bacterial Antibiotic Tolerance in Mycobacterium Tuberculosis

Comprehensive Mechanisms of Bacterial Antibiotic Tolerance in Mycobacterium Tuberculosis

Objective

Mycobacterium tuberculosis (Mtb) is one of about a dozen bacterial species for which some clinical isolates are now resistant to most or all antibiotics (abx) approved for treatment of the infections they cause. Mechanisms of antimicrobial resistance (AMR) in Mtb deserve study for their potential relevance to AMR in other pathogens; because tuberculosis (TB) is now the leading cause of death from infectious disease; and because drug-resistant TB may be the most prevalent of all drug-resistant bacterial infections. Heritable AMR in Mtb emerges with interruption of treatment, and the long duration of TB treatment provides many opportunities for interruption. Prolonged treatment is necessary because of nonheritable resistance, also called phenotypic tolerance or persistence, defined as the transient tolerance of bacteria in an antibiotic-sensitive population to an antibiotic during exposure to an otherwise lethal concentration of that antibiotic. In contrast to “resisters”, whose AMR is genetically encoded, “persisters” are genetically sensitive bacteria whose phenotypic tolerance allows them to survive for prolonged periods during what would otherwise be rapidly curative treatment. In addition, phenotypic tolerance is likely a source of treatment failure and a major contributor to TB reactivation after apparently effective treatment. The specific aims of this application are to identify genetic determinants that foster phenotypic tolerance in Mtb and decipher at a molecular level the mechanisms by which Mtb enters and maintains a persistent state.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Coordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE

Address

South Kensington Campus Exhibition Road
Sw7 2az London

United Kingdom

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 212 933,76

Project information

Grant agreement ID: 842826

Status

Ongoing project

  • Start date

    1 April 2019

  • End date

    31 March 2021

Funded under:

H2020-EU.1.3.2.

  • Overall budget:

    € 212 933,76

  • EU contribution

    € 212 933,76

Coordinated by:

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE

United Kingdom