CORDIS
EU research results

CORDIS

English EN
Bacterial membrane vesicles a novel delivery system for the treatment of multi-drug resistant Gram-negative bacterial infections.

Bacterial membrane vesicles a novel delivery system for the treatment of multi-drug resistant Gram-negative bacterial infections.

Objective

"Bacterial infections are a significant public health challenge and a major cause of human mortality globally. Antibiotics are indispensable for the treatment and prevention of infections caused by bacteria. However, global spread of drug-resistant bacteria, coupled with a dearth of new antibiotics in development has led to an alarming shortage of effective drugs. Gram-negative bacteria, in particular, protect themselves against antibiotics with a highly selective outer membrane. The high burden of diseases caused by Gram-negative bacteria, combined with their frequent multi-drug resistance has placed them as world´s highest-priority pathogens by the World Health Organization. Consequently, there is an urgent need for novel therapeutic approaches that combat Gram-negative bacterial pathogens. The goal of ""BacDrug"" is to use lipid-based bacterial membrane vesicles (BMVs) produced by non-pathogenic Lactococcus lactis as delivery system. BMVs have great potential as nanocarriers to by-pass the outer membrane and deliver their toxic payload to kill drug-resistant Gram-negative pathogens. A range of strategies will be used to load BMVs with cargo, including genetic engineering of L. lactis as well as chemical treatments. This Fellowship will harness expertise and techniques across microbiology, molecular biology, nanotechnology and drug design to deliver a successful outcome. The collaborative, truly interdisciplinary, cross faculty setting within the groups of Prof Molly Stevens (materials and bioengineering) and Dr Andrew Edwards (molecular microbiology) at ICL combines world-class expertise and provides an environment to maximise the success of this Fellowship, both in terms of the delivering the project and the training opportunities provided. Moreover, this innovative, alternative strategy to tackle drug-resistant Gram-negative bacterial infections has a high translational potential, which will be exploited via the clinical and translational research clinics at ICL."
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Coordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE

Address

South Kensington Campus Exhibition Road
Sw7 2az London

United Kingdom

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 212 933,76

Project information

Grant agreement ID: 838183

Status

Grant agreement signed

  • Start date

    1 January 2020

  • End date

    31 December 2021

Funded under:

H2020-EU.1.3.2.

  • Overall budget:

    € 212 933,76

  • EU contribution

    € 212 933,76

Coordinated by:

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE

United Kingdom