CORDIS
EU research results

CORDIS

English EN
Asymmetric Photochemical Reactions in confined Chiral space

Asymmetric Photochemical Reactions in confined Chiral space

Objective

The stereochemical control of a reaction is a crucial goal that spans numerous fields of research, ranging from drug discovery to materials science. In this context, photochemistry will play a key role, given the variety of transformations it can afford. In particular, supramolecular photochirogenesis, hence the control of the chiral outcome of a photochemical reaction afforded by the weak non-transient interactions between the guest and its chiral host, represents a promising yet not fully explored field. The aim of the proposal is to deepen the knowledge on photochirogenesis from a theoretical point of view and apply this knowledge to develop novel asymmetric photochemical protocols. This will combine the advantages of photochemistry (access to thermally not allowed reaction pathways and generation of high-energy intermediates among many) with the ones enabled by supramolecular host-guest interactions (such as the presence of a confined chiral space, the stabilization of reactive intermediates and the possibility to use the host itself as an antenna to excite the guest for the reaction to occur). The final goal of the proposal is represented by the use of chiral molecular motors to control the stereochemical information of the host. In this way, dynamic control of the enantioselective outcome of a (photo)chemical reaction will be achieved.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Coordinator

RIJKSUNIVERSITEIT GRONINGEN

Address

Broerstraat 5
9712cp Groningen

Netherlands

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 175 572,48

Project information

Grant agreement ID: 838280

Status

Ongoing project

  • Start date

    1 June 2019

  • End date

    31 May 2021

Funded under:

H2020-EU.1.3.2.

  • Overall budget:

    € 175 572,48

  • EU contribution

    € 175 572,48

Coordinated by:

RIJKSUNIVERSITEIT GRONINGEN

Netherlands