CORDIS
EU research results

CORDIS

English EN
Understanding the roles of pathogen infection and sensory cue integration in mosquito blood-feeding behavior

Understanding the roles of pathogen infection and sensory cue integration in mosquito blood-feeding behavior

Objective

Mosquitoes serve as vectors for diseases including dengue and malaria, for which half the world's population is at risk. Mosquito-borne pathogens are transmitted during blood feeding, yet despite its crucial role in pathogen transmission, blood feeding behavior remains ill understood. The sensory integration of physical and chemical cues on the skin and below its surface, and the effect of pathogen infection on blood feeding are poorly characterized. These knowledge gaps are due to a lack of tools to quantitatively study blood feeding behavior. To overcome these limitations, I propose an innovative approach to study blood feeding by leveraging quantitative imaging, computer vision, and an engineered human skin mimic to create a high-throughput behavioral assay. Imaging mosquitoes feeding on a transparent skin mimic will enable the detailed characterization of the behavioral trajectory leading to blood feeding while simultaneously allowing the analysis of biting dynamics by imaging the expectoration of saliva. To unravel the behavioral effects of pathogen infection, I will compare blood feeding by non-infected Aedes aegypti (the main dengue vector) and Anopheles gambiae (an important malaria vector) with their dengue virus and Plasmodium falciparum infected counterparts. Next, I will use microfabricaton to embed artificial vasculature in the skin mimic to dissect the sensory cue integration underlying blood feeding. I will characterize the biting dynamics of mutant Aedes aegypti deficient in various sensory pathways feeding on skin mimics that present a defined set of cues. By combining my skills in biophysics with the host labs expertise in mosquito-pathogen interactions, this project will provide a deep understanding of the neurobiology underlying blood feeding by mosquitoes, and the effect that pathogen infections may have on this behavior. Elucidating the transmission of mosquito-borne pathogens will provide valuable insights to combat mosquito-borne diseases.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Coordinator

INSTITUT PASTEUR

Address

Rue Du Docteur Roux 25-28
75724 Paris Cedex 15

France

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 196 707,84

Project information

Grant agreement ID: 841893

Status

Grant agreement signed

  • Start date

    1 July 2019

  • End date

    30 June 2021

Funded under:

H2020-EU.1.3.2.

  • Overall budget:

    € 196 707,84

  • EU contribution

    € 196 707,84

Coordinated by:

INSTITUT PASTEUR

France