Skip to main content
European Commission logo print header

Decrease Jet-Installation Noise

Project description

New computational fluid dynamics methods make aircraft quieter

More than 4 million people in the EU are exposed to aviation noise levels of more than 55 decibels (dB) Lden from air transport while noise levels above 45 dB Lden are associated with adverse health effects. And yet, the sound of aircraft engines, can exceed 140 dB during take-off. To reduce this level, the EU-funded DJINN project will develop a new generation of reliable computational fluid dynamics (CFD) methods to assess promising noise-reduction technologies for future integrated propulsion aircraft. It is suggested to achieve 5 dB reduction of the jet-airframe interaction noise peak level at low frequencies. According to DJINN, understanding, modelling and predicting jet-airframe noise is the key to conceiving efficient noise-reduction technologies.

Objective

With the aim of reducing the environmental impact of noise caused by aircraft during take-off, the prediction and mitigation of jet-airframe interaction noise sources remain significant challenges for closely integrated propulsion-airframe architectures.

The ambition of the DJINN project is therefore to develop a new generation of reliable computational fluid dynamics (CFD) methods, most of them belonging to the field of hybrid methods, for assessing promising noise-reduction technologies, with support and validation from reduced-scale experiments. This key ambition is tied to the provision of advanced tools for coupled aerodynamics-aeroacoustics to enable design optimisation in future industrial environments and to reach a new level of noise reduction through a highly collaborative effort.

The DJINN project denotes a breakthrough in designing quieter and greener aircraft through both improved CFD methods and better physical understanding. The ability to understand, model and predict jet-airframe noise is the key to conceive efficient noise reduction technologies and optimise future industrial designs. Important noise reductions of future integrated propulsion aircraft are foreseen with 5 dB reduction of the jet-airframe interaction noise peak level at low frequencies. This objective cannot be reached by investigating the engine/nozzle and airframe systems separately. Improved CFD methods for multi-physics modelling utilizing high-performance computing are expected to reduce design times and costs by around 25% compared to large-scale testing.

The DJINN project will make a major impact on economic and environmental factors and secure the leadership of the European aeronautics industry in the highly competitive global market.

The consortium is formed by major industrial aeronautical companies, well-known research organisations and academic groups, with an SME acting as the coordinator.

Call for proposal

H2020-MG-2018-2019-2020

See other projects for this call

Sub call

H2020-MG-2019-TwoStages

Coordinator

CFD SOFTWARE - ENTWICKLUNGS- UND FORSCHUNGSGESELLSCHAFT MBH
Net EU contribution
€ 594 285,00
Address
WOLZOGENSTRASSE 4
14163 Berlin
Germany

See on map

SME

The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.

Yes
Region
Berlin Berlin Berlin
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost
€ 594 285,00

Participants (12)