Skip to main content

Evolution of Xylan Utilization Loci 's enzymes for the design of enzymatic assemblies


Lignocellulosic biomass (LCB) is a renewable and inexhaustible carbon source on Earth and its valorisation will drive sustainable circular bioeconomy. Microorganisms involved in LCB deconstruction produce a huge repertoire of carbohydrate active enzymes (CAZymes) in order to utilize LCB as carbon source. Specifically, Bacteroides, encode fine-tuned gene clusters dedicated to polysaccharide metabolism called Polysaccharide Utilization Loci (PUL). The host team recently discovered a xylan PUL from termite gut whose enzymes showed promising activity on different LCB. In EvoXUL project an original co-evolution strategy will be deployed to simultaneously engineer XUL’s enzymes towards wheat bran and wheat straw hydrolysis. In addition, a combination of enzyme assemblies will be created thanks to the Bio Molecular Welding Jo-In system to further maximize the synergy between the catalysts and to unravel the impact of enzyme spatial organization with the goal of developing more efficient enzyme cocktails for bioeconomy. The fellow and members of the French National Institute for Applied Sciences of Toulouse (INSA Toulouse) will establish a successful collaboration plan on the basis of their respective backgrounds in hydrolases involved in biomass valorisation (biochemistry, applied enzymology, bioprocess engineering) and protein evolution, engineering, and functional characterization of glycoside hydrolases, respectively. The acquired knowledge in structure and synergism of modular enzymes will provide rules for tailor made enzyme assemblies for future industrial applications related with lignocellulosic feedstock biorefinery. The project will provide an in depth training in molecular biology, protein engineering and structure-function of carbohydrate modifying enzymes.

Field of science

  • /natural sciences/biological sciences/molecular biology
  • /social sciences/economics and business/economics/bioeconomy
  • /agricultural sciences/agricultural biotechnology/biomass
  • /natural sciences/biological sciences/biochemistry/biomolecules/carbohydrates
  • /natural sciences/biological sciences/biochemistry/biomolecules/proteins/enzymes

Call for proposal

See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF


Avenue De Rangueil 135
31077 Toulouse
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 184 707,84