Project description
Quantum systems impervious to thermal changes could spark advances in future information storage
Complex quantum systems typically relax fast to thermal behaviour if left on their own, just as ice cubes dropped into a drink are expected to melt. This could pose a serious barrier to the development of future quantum storage systems as they would not be able to retrieve data. New studies suggest that a quantum system could resist thermal changes in its environment through a mechanism known as ergodicity breaking, which ‘freezes’ the system close to its initial state for a very long time. Funded by the Marie Skłodowska-Curie Actions programme, the EBQM project will thoroughly study two mechanisms of ergodicity breaking: many-body localisation and quantum glasses. Deeper understanding of these mechanisms could help engineer quantum matter impervious to thermalisation.
Fields of science
Programme(s)
Funding Scheme
MSCA-IF-EF-ST - Standard EF
Coordinator
14195 Berlin
Germany
See on map