PROJECT ID: IST-2001-32516
Funded under: FP5-IST

MOBILE TELE-ECHOGRAPHY USING AN ULTRA-LIGHT ROBOT

From 2001-09-01 to 2004-09-30 | OTELO Website

Project details

<table>
<thead>
<tr>
<th>Total cost:</th>
<th>Topic(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUR 3 340 500</td>
<td>IST-2001-1.1.2 - Intelligent collaborative environments supporting continuity of care</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EU contribution:</th>
<th>Funding scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUR 1 811 924</td>
<td>CSC - Cost-sharing contracts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinated in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
</tr>
</tbody>
</table>

Objective

The OTELO project proposes the study and development of a fully integrated end-to-end mobile tele-echography system for population groups that are either temporarily or permanently not served locally by medical experts. The main drawback of current ultrasound techniques is that the quality of the examination highly depends on the operator’s specialised skills, which are lacking in most health centres. OTELO is a portable ultrasound probe holder robotic system, associated with new mobile communications technologies that will reproduce the expert’s hand movements during an ultrasound examination. Although being manipulated by non-specialised staff on the remote site, the slave system will bring, in real time, good image quality back to the expert site where force feedback control will be combined with virtual reality for the rendering of the distant environment.

OBJECTIVES

OTELO project proposes the study and development of a fully integrated end-to-end mobile tele-echography system for population groups that are not served locally, either temporarily or permanently, by medical experts. OTELO project offers an alternative to medical centers that lack ultrasound specialists. It is a portable ultrasound probe holder robotic system, associated with new mobile communications technologies that will reproduce the expert’s hand movements during an ultrasound examination. Although being manipulated by non-specialised staff on the remote site, the slave system will bring, in real time, good image quality back to the expert site where force feedback control will be combined with virtual reality for the rendering of the distant environment.

DESCRIPTION OF WORK

After characterisation of the clinical expert’s hand movement, a 6 dof probe holder robot will be designed according to the clinical needs; it will include rotations and linear displacements. Kinematics, dynamics behaviours and control laws will be developed. Force feedback control for a bilateral tele-operation architecture will be defined. Technique of ultrasound images acquisition via frame grabbing will be developed. Images compression techniques will be tested. Two solutions will be proposed depending on the examination phase: fast compression method when expert researches for a specific organ and an accurate compression method (wavelet) during the pre-diagnosis phase. An audio-video conference system will be used for the environmental data transmission. The project foresees three scenarios for data transmission: terrestrial link (ISDN, GPRS.,) mobile communication system from the field of operation with an omni-directional antenna (the 56 Kbps rate will allow clinical data access or images transfer); A fixed dish terminal (up to 384 Kbps operation for full motion video). At the master station, located at the expert centre, an interface with the communication system and image sequences decoder will be developed to allow high quality visualisation of ultrasound images. This interface will integrate: ultrasound images sequences, a view of the examined area provided by a camera and an audio/video conference. A virtual reality environment associated with a fictive probe will be designed: current technologies will be investigated, the most suitable will be selected for the application. Three slave and masters stations will be made. The slave stations, located in secondary hospitals, will integrate the probe-holder robot, current technologies will be investigated, the most suitable will be selected for the application. They
will be used for the technical and clinical validation of the OTELO project.

Coordinator

UNIVERSITE D'ORLEANS
CHATEAU DE LA SOURCE
45067 ORLEANS
France

See on map

Administrative contact: Pierre VIEYRES
Tel.: +33-24-8238477
Fax: +33-24-8238471
E-mail

Participants

CENTRE FOR RESEARCH AND TECHNOLOGY HELLAS
6TH KM CHARILAOU-THERMI ROAD
57001 THERMI-THESSALONIKI
Greece

Administrative contact: Michael STRINTZIS
Tel.: +30-2310-996351
Fax: +30-2310-996342
E-mail

CORPORACIO SANITARIA CLINIC
VILLARROEL 170
08036 BARCELONA
Spain

See on map

Administrative contact: Conceptio BRU
Tel.: +34-93-2279905
E-mail

EBIT SANITA S.P.A.
VIA SIFFREDI ANGELO 58
16153 GENOVA
Italy

See on map

Administrative contact: Marco FRUSCIONE
Tel.: +39-01-06547464
Fax: +39-01-06547465
E-mail
ELSACOM S.P.A
VIA PUCCINI GIACOMO 2
16154 GENOVA
Italy
See on map

Administrative contact: Carломагно NICOLAI
Tel.: +39-06-872751
Fax: +39-06-87275301
E-mail

KELL - S.R.L
VIA PLINIO 22
00193 ROMA
Italy
See on map

Administrative contact: Guglielmo Renato RAIMONDI
Tel.: +39-06-36004916
Fax: +39-06-3216937
E-mail

KINGSTON UNIVERSITY
RIVER HOUSE, 53-57 HIGH STREET
KT1 1LQ KINGSTON UPON THAMES
United Kingdom
See on map

Administrative contact: Robert S. H. ISTEPANIAN
Tel.: +44-20-85478242
Fax: +44-20-85477971
E-mail

SINTERS SA
PARC TECHNOLOGIQUE BASSO CAMBO - 5 RUE PAUL MESPLE
31100 TOULOUSE
France
See on map

Administrative contact: Loic URBAIN
Tel.: +33-05-62111717
Fax: +33-05-62111749
E-mail
Administrative contact: Philippe ARBEILLE
Tel.: +33-24-7475939

Subjects
Information Processing and Information Systems - Life Sciences - Medicine and Health

Last updated on 2005-06-13
Retrieved on 2019-07-06

© European Union, 2019