CORDIS
EU research results

CORDIS

English EN

Low Cost satellite based train location system for signalling and train PROtection for Low density railway lines

Project information

Grant agreement ID: IST-2000-28103

  • Start date

    1 August 2001

  • End date

    31 March 2005

Funded under:

FP5-IST

  • Overall budget:

    € 7 957 244

  • EU contribution

    € 4 047 467

Coordinated by:

ALSTOM BELGIUM SA

Belgium

Objective

The project intends to define, develop, test and validate an innovative cost-effective satellite based (GNSS) vital fail-safe train location system as the core of a train protection, control and command system. The proposed innovations will achieve a significant reduction of the cost aiming to short term applications for low-density traffic railway lines. The system will enhance and extend the ERTMS/ETCS system, currently covering high density lines, to low density lines.

Objectives:
The project will develop an innovative cost-effective satellite based fail-safe train location system as the core of a train protection, control and command system, thereby achieving a significant cost reduction by concentrating more intelligence on-board. The system will enhance and extend the ERTMS/ETCS system, currently essentially covering high density lines, to low density lines.

The four main objectives of the project are strongly interconnected:
- to define a new multi-technology location system based on satellite positioning combined with fail-safe on-board track mapping and interlocking;
- to study its application to ERTMS/ETCS;
- to study and prove its short term applicability in Low Density Traffic Lines;
- to study and prove its applicability in order to increase track side workers protection. The approach is drastically different from the recently emerged train-aided satellite location systems in the sense that additional sensors and Kalman are no longer required.

Work description:
The work will be organised in accordance with the standardised V cycle process. WP2 will start the work by capturing the user's needs in terms of potential services and user expectations. This will allow us to define the system requirements (functional, operational, performances and RAMS requirements) needed for the system specification (WP3). In the same WP, the overall system architecture including the external and internal interfaces will be specified. A next step is the proper development of the system (hardware and software) whereas much as possible existing subsystems and modules already developed (e.g. in the framework of the ERTMS/ETCS) will be reused. This process will allow to shorten the duration of the development phase.
Tools for testing the subsystems and overall system integration will be produced. Individual modules and their interconnections will be tested in laboratory and finally the overall system will be tested in a simulated railway environment. The system will then be implemented (WP4) in two different test sites allowing the validation of specific functionalities in these different environments under live operation conditions. Particular attention will be taken to impact of human factors, communication problems, satellite coverage availability and reliability, fallback mode operation, performances and interface with existing signalling systems. During the whole system design, implementation and validation phase, the safety aspects will be tackled (WP5). Possible hazards will be identified in early stages leading to a high system safety integrity level.
The system will then be evaluated (WP6) to show that all system elements have been correctly integrated and respond to the expectations set in WP2. This WP will also generate a Business Case for the system. Wide dissemination of project work and results is the essence of WP7. Conferences in Europe and China will be organised.

Milestones:
- User needs definition completed after 5 months;
- Initial system specification available at month 12;
- Final specifications at month 36;
- System modules will be ready at month 26. Site tests finished at month 32; Safety validation running for 33 months and ending at month 35;
- Evaluation criteria available at month 15;
- Evaluation results available at month 35;
- The Business Case will be presented at month 35;
- Dissemination conferences will be organised during the third year of the project.

Coordinator

ALSTOM BELGIUM SA

Address

Rue Cambier Dupret 50-52
6001 Charleroi

Belgium

Participants (11)

ALSTOM TRANSPORT SPA

Italy

DR. ING. XIWEN ZHANG, BERATUNG UND PLANUNG IM VERKEHRSWESEN

Germany

EUROPEAN ROAD TRANSPORT TELEMATICS IMPLEMENTATION COORDINATION ORGANISATION S.C.R.L.

Belgium

HONEYWELL REGELSYSTEME GMBH

Germany

INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS ET LEUR SECURITE

France

NORTHERN JIAOTONG UNIVERSITY

China

RESEAU FERRE DE FRANCE

France

SEPTENTRIO NV

Belgium

SOCIETE EXPLOITATION CFTA

France

SOCIETE NATIONALE DES CHEMINS DE FER BELGES - NATIONALE MAATSCHAPPIJ DER BELGISCHE SPOORWEGEN

Belgium

TRASYS SA

Belgium

Project information

Grant agreement ID: IST-2000-28103

  • Start date

    1 August 2001

  • End date

    31 March 2005

Funded under:

FP5-IST

  • Overall budget:

    € 7 957 244

  • EU contribution

    € 4 047 467

Coordinated by:

ALSTOM BELGIUM SA

Belgium