Interfacial Phenomena in Microgravity Conditions Considering Surface Deformation, Vibrational Action and the Soret Effect

Project ID: INTAS-1999-01505
Funded under: IC-INTAS

Interfacial Phenomena in Microgravity Conditions Considering Surface Deformation, Vibrational Action and the Soret Effect

From 2000-05-01 to 2002-04-30

Project details

<table>
<thead>
<tr>
<th>Total cost:</th>
<th>Topic(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not available</td>
<td>1A - Nuclear Physics, Astronomy, Astrophysics</td>
</tr>
<tr>
<td>EU contribution:</td>
<td>ESA - ESA</td>
</tr>
<tr>
<td>EUR 49 830</td>
<td></td>
</tr>
<tr>
<td>Coordinated in:</td>
<td>Germany</td>
</tr>
</tbody>
</table>

Objective

This section briefly summarizes the basic ideas behind the research of the project and the expected results.

It is intended to study
- liquid behaviour in micro-gravity conditions under the complex action of various factors - the thermo-capillary and concentration capillary effects, and the influence of vibration forces with consideration of surface deformation and cross-effects resulting from multi-component nature of the examined liquid;
- surface deformations, which are related to the initiation of Marangoni convection and can lead to wave generation and layer breaking;
- the influence of high frequency vibrations on the Marangoni instability of multi-layer structures in multi-component immiscible liquids;
- the influence of the cross-effects, including the Soret effect, on Marangoni convection and the Marangoni instability;
- the conditions of mechanical equilibrium of a binary mixture drop in a surrounding medium, the Marangoni flows inside/outside of the drop and the motion of the drop itself.

It is projected to elaborate:
- new theoretical approaches and experimental methods in order to find solutions to the stated problems; in this context, to develop the averaged equations governing the Marangoni convection in terms of the non-Boussinesq approximation. Points of scientific interest include the investigation of:
- the structure of thermo-capillary convection in the vicinity of a meniscus and conditions for the initiation of oscillatory flow regimes, the characteristic features of the interaction of meniscus oscillations with the surface waves;
- the averaged equations of vibration-thermo-capillary convection in the case when the Boussinesque approximation is not valid;
- the structure of thermocapillary convection in multi-layer systems and its response to high frequency vibrations, the critical parameters for transitions between different convection regimes;
- the conditions of the stability of diffusive mass transfer of a surfactant from drops to a surrounding medium with respect to drifting monotonous and oscillating disturbances taking into account the main surface effects and complicating surface factors.

Based on the obtained results it is intended:
- to prepare micro-gravity experiment proposals;
- to prepare recommendation for updating the technology of crystal growth.
Coordinator

Universität Giessen
H.-Buff-Ring 16
35390 Giessen
Germany
See on map

Administrative contact: Dietrich SCHWABE
Tel.: +49-641-9933150
Fax: +49-641-9933119
E-mail

Participants

Perm State Pedagogical University
24 Sibirskaya street
614007 Perm
Russia
See on map

Administrative contact: Rudolf Voldemarovich BIRIKH
Tel.: +7-342-2314264
E-mail

Perm State University
Bukirev Street, 15
614600 Perm
Russia
See on map

Administrative contact: Yuri Klavdievich BRATUKHIN
Tel.: +7-342-2396524
Fax: +7-342-2337571
E-mail

Rostov State University
5 Zorge street
344090 Rostov-on-Don
Russia
See on map

Administrative contact: Viktor Iosifovich YUDOVICH
Tel.: +7-863-2221312
E-mail
Université Libre de Bruxelles
50, Av. F.D. Roosevelt
1050 Brussels
Belgium
See on map

Administrative contact: Jean-Claude LEGROS
Tel.: +32-2-6503141
Fax: +32-2-6503126
E-mail

Ural Branch of the Russian Academy of Sciences
1 Korolev street
614013 Perm
Russia
See on map

Administrative contact: Vladimir Abramovich BRISKMAN
Tel.: +7-342-2391365
Fax: +7-342-2336957
E-mail

Ural Branch of the Russian Academy of Sciences
1 Korolev street
614013 Perm
Russia
See on map

Administrative contact: Andrew Leonidovich ZUEV

Subjects
Coordination and Cooperation - Scientific Research

Last updated on 2002-10-30
Retrieved on 2019-06-16

Permalink: https://cordis.europa.eu/project/rcn/66106_en.html

© European Union, 2019