CORDIS
EU research results

CORDIS

English EN
Photonic engineering of nonlinear-optical properties of hybrid materials for efficient ultrafast optical switching

Photonic engineering of nonlinear-optical properties of hybrid materials for efficient ultrafast optical switching

Objective

The project focuses on the development of efficient ultrafast photonic switching elements in hybrid organic/inorganic photonic nanostructures. The approach encompasses all necessary components to validate this hybrid approach: development of modelling tools, cost-efficient manufacturing of inorganic photonic nanostructures, advanced deposition techniques of ordered organic thin-films, and optoelectronic analysis and testing. The targeted application area are optical communication networks exhibiting advanced multiplexing schemes (e.g. optical CDMA), although efficient photonic switching will certainly also have a high impact on the development of photonic interconnects to resolve the interconnection bottleneck of data processing equipment, and on the development of advanced photonic switching elements necessary for quantum computation applications. The project focuses on the development of efficient ultrafast photonic switching elements in hybrid organic/inorganic photonic nanostructures. The approach encompasses all necessary components to validate this hybrid approach: development of modelling tools, cost-efficient manufacturing of inorganic photonic nanostructures, advanced deposition techniques of ordered organic thin-films, and optoelectronic analysis and testing. The targeted application area are optical communication networks exhibiting advanced multiplexing schemes (e.g. optical CDMA), although efficient photonic switching will certainly also have a high impact on the development of photonic interconnects to resolve the interconnection bottleneck of data processing equipment, and on the development of advanced photonic switching elements necessary for quantum computation applications.

OBJECTIVES
The general goal of this project is to develop efficient ultrafast photonic switching elements by hybrid organic/inorganic photonic nanostructures. For this goal several sub-objectives are to be adressed:%
1) development of modelling tools;
2) development of cost-efficient manufacturing techniques for inorganic photonic nanostructures;
3) development of advanced deposition techniques of ordered organic thin-films;
4) optoelectronic analysis and testing, experimental validation;
5) systematic evaluation of performance.

DESCRIPTION OF WORK
Apart from managing and dissemination activities, the scientific approach centres on:
1) Expansion of finite difference time domain simulation tools to include nonlinear Maxwell equations to enable systematic design and modelling;
2) Manufacture of high finesse inorganic resonant photonic structures (circular cavities and 2D photonic bandgaps) to increase photonic density of states at the spectral position of desired maximum nonlinearity. Calculations predict an increase by up to 5 orders of magnitude is conceivable. Alternatively SiO2, SiN4 or SOI will be the inorganic materials of choice, in order to adjust the dielectric contrast in a nanotechnologically mature material;
3) Use available rigid rod conjugated molecules like thiophenes, oligo-fluorenes, as the organic materials of choice due to:
i) high bulk nonlinear optical coefficients, ii) photochemical and thermal stability; iii) ordered deposition techniques already demonstrated. Use advanced ordered deposition techniques to manufacture thin organic films on the nanostructured substrates. Here, AFM will be adopted to quantifying the degree of order 4) Ample optical analysis of the developed structures will be undertaken to evaluate: i) static nonlinear properties, ii) femtosecond time-resolved analysis of switching processes, and iii) the analysis of simple optoelectronic devices, in order to evaluate the endurance under operation (thermal and optical degradation);
5) Evaluation in an industrial lab environment to quantify advantages with respect to standard approaches. The proposal comprises a high degree of community added value by integrating diverse highest level competencies in all fields necessary to address the problem envisioned. A similar consortium would be impossible outside a EU context. Additionally, by actively integrating both industry as well as SME efforts with research laboratories, it foments the cross-fertilization of the different organizational structures at a European scale.

Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Coordinator

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN

Address

Templergraben 55
52056 Aachen

Germany

Administrative Contact

Peter HARING BOLIVAR

Participants (4)

Sort alphabetically

Expand all

COMMISSARIAT A L'ENERGIE ATOMIQUE

France

CONSIGLIO NAZIONALE DELLE RICERCHE

Italy

GESELLSCHAFT FUER ANGEWANDTE MIKRO- UND OPTOELEKTRONIK MIT BESCHRANKTER HAFTUNG - AMO GMBH

Germany

INTERNATIONAL BUSINESS MACHINES CORPORATION

United States

Project information

Grant agreement ID: IST-2001-38919

  • Start date

    1 January 2003

  • End date

    31 December 2005

Funded under:

FP5-IST

  • Overall budget:

    € 3 245 422

  • EU contribution

    € 1 375 000

Coordinated by:

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN

Germany