Skip to main content
European Commission logo print header
Contenu archivé le 2024-04-19

DESIGN OF ADVANCED MATERIALS FOR COLD FORGING TOOLS BY MACRO- AND MICROMECHANICAL MODELLING

Objectif


A new tool material for cold forging applications was developed using numerical simulation techniques (FEM) for the design and a powder metallurgical route (HIP) for the production. The basic idea was to find an optimised microstructure of the two phase material by simulating different distribution sof hard particles within the metal matrix. On the micro-scale, loading was applied by a field of deformations which was obtained by a macroscopical simulation of a particular cold forming process in bolt making. A new double dispersion microstructure was found to show the best resistance against crack propagation. Specimens were produced by hot isostatic pressing. Afterwards the new material was tested in the laboratory. Wear resistance and bending strength of the double dispersive material are comparable to a standard dispersion material with the same volume fraction of particles, but fracture toughness is increased by about 30%. Testing the new material in bolt making showed that the life time of the tool is increased by a factor of 8.
The cold forging of metals calls for advanced tooling materials with improved fracture strength and toughness. These mechanical properties depend on the size, shape, orientation, amount and distribution of wear resistant hard phases, which are embedded in a hardened steel matrix.

Starting from a macroscopical finite element analysis of stresses and strains in a tool, the regions of highest loading are modeled by fine-scale FEM. This enables a simulation of various microscopical situations as far as the hard phases and the size of the plastic zone in the matrix are concerned. These parameter studies and the experimental parameter verifications are used to elaborate failure criteria an to design the microstructure of advanced tooling materials with optimal properties.

Compared to conventional manufacturing via ingot and hot working, the powder metallurgy and spray deposition offer more possibilities to realize a designed microstructure. These methods are used to produce and test advanced tooling materials on a laboratory scale.

Appel à propositions

Data not available

Régime de financement

CSC - Cost-sharing contracts

Coordinateur

Centre National de la Recherche Scientifique (CNRS)
Contribution de l’UE
Aucune donnée
Adresse
EVOIL-USTL
59655 Villeneuve d'Ascq
France

Voir sur la carte

Coût total
Aucune donnée

Participants (2)