Skip to main content
European Commission logo print header

Bioreactive composite scaffold design for improved vascular connexion of tissue-engineered products

Ziel

Engineered tissues today in most cases lack appropriate connexion to the vascular system of the surrounding tissue in body at the implantation site. Hence the tissues suffer from malnutrition and low gas exchange leading to necrosis. To overcome this bottl eneck the strategic objective of this proposal is to develop a novel three-dimensional scaffold structure for improved vascularisation of tissue-engineered products. Application of intelligent biomaterials (bioresorbable stimuli-sensitive polymers) and inc orporation of bioactive substances (e.g. growth factors, monocyte-activating agents) will enhance a structured vascularisation of tissue-engineered constructs by gradually opening inserted microchannels for vessel ingrowth into cell-seeded polymeric scaffo lds. Furthermore, the mechanism of induction of secondary angiogenesis by monocytes will be used to control vascularisation. The signal for the stimulus-sensitive polymer to act (induction of angiogenesis) is intended to be a pH drop associated with malnut rition of cells.The use of angiogenic factors in promoting vascularisation of tissue-engineered constructs so far was performed by a rather isotropic distribution of factors in the scaffolds preventing the build-up of a gradient of bioactive substances for directed cell growth (angiogenesis). In our approach the tubular structure of the microchannels opened up upon activation of stimuli-sensitive filaments will guide cells involved in vascularisation and/or will provide a gradient for directed cell migratio n and growth. The composite scaffold giving rise to evolving vessels is intended to provide the vascular connexion to the surrounding tissue in the course of wound healing. The complex bunch of requirements for a functional vascularisation of tissue-engine ered products calls for a strong inter- and transdisciplinary cooperation of chemists, biologists, engineers, physicists and physicians depending on a pronounced cross-frontier collaboration.

Aufforderung zur Vorschlagseinreichung

FP6-2003-NMP-TI-3-MAIN
Andere Projekte für diesen Aufruf anzeigen

Koordinator

GKSS FORSCHUNGSZENTRUM GEESTHACHT GMBH
EU-Beitrag
Keine Daten
Adresse
Max-Planck-Strasse 1
GEESTHACHT
Deutschland

Auf der Karte ansehen

Links
Gesamtkosten
Keine Daten

Beteiligte (6)