Advanced Power Converters for Universal and Flexible Power Management in Future Electricity Networks

From 2006-03-01 to 2009-08-31 | UNIFLEX-PM Website

Project details

<table>
<thead>
<tr>
<th>Total cost:</th>
<th>EUR 2 354 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU contribution:</td>
<td>EUR 1 902 684</td>
</tr>
<tr>
<td>Coordinated in:</td>
<td>United Kingdom</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic(s):</th>
<th>SUSTDEV-1.2.3 - New technologies for energy carriers - Electricity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call for proposal:</td>
<td>FP6-2004-ENERGY-3</td>
</tr>
<tr>
<td>Funding scheme:</td>
<td>STREP - Specific Targeted Research Project</td>
</tr>
</tbody>
</table>

Objective

The objective of this project is to develop advanced power conversion techniques to meet new application needs in the Future European Electricity Network, and to validate these techniques in hardware. The key technical advance will be the validation of a modular power conversion architecture and associated control structures which have the required flexibility and performance to make a major impact in all aspects of the Future European Electricity Network. Within this arena, power converters can provide: optimised connection of distributed energy resources, integration and management of energy storage, optimised utilisation of the transmission/distribution infrastructure, high quality of supply and coordinated control across the network, for example. To be acceptable in the marketplace, converters must have low energy losses, very high reliability, small size, high performance and low economic costs. The modular power conversion architecture, using advanced components, will meet all of these requirements and can be applied across the range of applications. The modular concept relies on the use of medium frequency (MF) transformer isolation modules. Research will be directed at optimising the MF transformer to gain the desired performance and insulation and on the associated switching elements to achieve a practical isolation module with very low losses and low size. Research on converter configurations will be informed by application characterisation studies to ensure close mapping to application requirements and will incorporate new and emerging wide band-gap (eg SiC) power devices. Research on control strategies will aim at achieving desired dynamic interactions with the grid, with high power quality, whilst maintaining the lowest possible converter losses. Reliability and economic assessments studies will be undertaken. Finally, hardware validation of the modular architecture and its control will be undertaken at a representative power level (500kVA).

Related information

<table>
<thead>
<tr>
<th>Result In Brief</th>
<th>Good news for electric grids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Summaries</td>
<td>Final Report Summary - UNIFLEX-PM (Advanced Power Converters for Universal and Flexible Power Management in Future Electricity Networks)</td>
</tr>
</tbody>
</table>
Coordinator

AREVA T AND D UK LTD
St Leonards avenue
STAFFORD
United Kingdom

Administrative contact: Roger John BASSETT, (Technology Consultant and Senior Expert)
Tel.: +44-1785-786512
Fax: +44-1785-786505
E-mail

Participants

THE UNIVERSITY OF NOTTINGHAM
University Park
NOTTINGHAM
United Kingdom

Administrative contact: Patrick WHEELER
Tel.: +44-01159515591
Fax: +44-01159515616
E-mail

AALBORG UNIVERSITET
Fredrik Bajers vej 5
AALBORG
Denmark

Administrative contact: Frede BLAABJERG
Tel.: +45-96359254
Fax: +45-98141411
E-mail

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Ecublens
LAUSANNE
Switzerland

Administrative contact: Alfred RUFER
Tel.: +41-0216934676
Fax: +41-0216932600
E-mail
UNIVERSITA DEGLI STUDI DI GENOVA
Via Balbi 5
GENOVA
Italy

Administrative contact: Stefano SAVIO
Tel.: +39-0103532182
Fax: +39-0103532700
E-mail

ABB SECHERON SA
rue des Sablières 4-6
GENEVE
Switzerland

Administrative contact: Peter BILLER
Tel.: +41-585862630
Fax: +41-585862682
E-mail

DYNEX SEMICONDUCTOR LIMITED
Doddington
LINCOLN
United Kingdom

Administrative contact: David NEWCOMBE
Tel.: +44-1522502748
E-mail

EUROPEAN POWER ELECTRONICS AND DRIVES ASSOCIATION
c/o VUB-TW, Pleinlaan, 2
BRUSSEL
Belgium

Administrative contact: Brigitte SNEYERS
Tel.: +32-26282820
Fax: +32-26291899
E-mail

Last updated on 2010-06-07
Retrieved on 2019-05-28

© European Union, 2019