Skip to main content

Metallic source and drain for advanced MOS technology

Objective

Among the main difficulties to overcome toward the 10 nm gate length MOSFET, many challenges are associated to the source/drain (S/D) regions. The tight constraints of dopant activation to achieve very highly doped junctions, extremely steep lateral profiling, and low contact specific resistance have motivated a renewed interest in MOSFETs architectures that integrate metallic Schottky S/D.

Based on that background, the METAMOS project proposes the design, optimisation, fabrication and characterization of metallic Schottky-Barrier-like MOSFETs to solve critical problems associated to the source/drain architecture and more specifically due to the specific contact resistance at the metal (or silicide) to silicon interface. The first major objective is to develop and fully characterize advanced very low Schottky barriers (<0.1 eV) primiraly based on (but not limited to) silicides of platinum and iridium for p-type contacts and rare earth silicides (erbium, ytterbium) for n-type contacts. The second objective is to demonstrate the complete integration of metallic source/drain (S/D) in a complementary MOS technology at academic level as a test bed to operate the appropriate selection of contact materials and process flow for industrial exploitation.

The third objective concentrates on the implementation of metallic S/D into bulk and SOI CMOS process cores to demonstrate the transfer from a laboratory concept to an industrially viable solution. Finally, the fourth general objective is to get a definitive answer on the ability of metallic S/D MOSFETs and of non-overlap architectures to outmatch the conventional one, based on device demonstration, wideband measurements, physical modelling and comparison with CMOS state-of-the-art and ITRS requirements.

To reach this goal, the project is organized in 4 technical work packages covering
i) material engineering,
ii) process integration,
iii) device simulation and modelling and
iv) material and device characterization.

Field of science

  • /natural sciences/chemical sciences/inorganic chemistry/inorganic compounds

Funding Scheme

STREP - Specific Targeted Research Project

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Address
3, Rue Michel-ange
Paris
France

Participants (5)

INSTYTUT TECHNOLOGII ELEKTRONOWEJ
Poland
Address
Al. Lotnikow 32/46
Warszawa
PHILIPS SEMICONDUCTORS CROLLES R&D
France
Address
860 Rue Jean Monnet
38920 Crolles
STMICROELECTRONICS CROLLES 2 SAS
France
Address
850 Rue Jean Monnet
38920 Crolles
UNIVERSIDAD DE SALAMANCA
Spain
Address
Patio De Escuelas, 1
Salamanca
UNIVERSITE CATHOLIQUE DE LOUVAIN
Belgium
Address
1 Place De L'universite
1348 Louvain-la-neuve