BNC TUBES
Project ID: 33350
Funded under: FP6-NMP

Novel, Heteroatomic Boron, Nitrogen and Carbon Nanotubes (BNC Tubes)

From 2007-02-01 to 2010-07-31

Project details

<table>
<thead>
<tr>
<th>Total cost:</th>
<th>EUR 3 034 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU contribution:</td>
<td>EUR 2 500 000</td>
</tr>
<tr>
<td>Coordinated in:</td>
<td>Finland</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic(s):</th>
<th>NMP-2004-3.4.1.3-1 - Three dimensional nano-structures based on elements other than carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call for proposal:</td>
<td>FP6-2004-NMP-TI-4 See other projects for this call</td>
</tr>
</tbody>
</table>

| Funding scheme: | STREP - Specific Targeted Research Project |

Objective

This project aims to develop novel, continuous, chemical vapour deposition (CVD) based synthesis methods for three dimensional regular nanostructures in the form of hetero-atomic nanotubes (NTs) composed of boron, nitrogen and carbon: BN, N-doped carbon, B-doped carbon and mixed B-N-C nanotubes. In doped nanotubes either or both boron and nitrogen atoms replace carbon atoms within the structure and are covalently bound. The main target is to control the electrical properties of nanotubes (i.e. metallic or n- or p-semiconducting), with special attention to control the number of layers: 1 (SWNT), 2 (DWNT) or several (MWNT).

The important industrial potential is demonstrated by developing transparent, conductive, flexible nanotube mats. We will explore the optical (i.e. band gap), electrical conductivity, electron field emission as well as non-linear optical properties of produced nanotubes. A significant dedicated modelling aspect is included. We will study NT synthesis using system level computational fluid/aerosol dynamics methods and investigate NT properties based on detailed atomistic modelling using ab initio, molecular dynamics and Monte Carlo simulations. Metrology issues include the development as well as comparison of advanced transmission electron microscopic (TEM) and scanning tunnelling (STM) methods to determine the atomic structure and non-linear optical properties of produced nanotubes.

The project team has 9 world-class, multidisciplinary partners in the field, including the Helsinki University of Technology, CNRS, Oxford University, Facultés Universitaires Notre-Dame de la Paix, University of Oulu and Prokhorov General Physics Institute of Russian Academy of Sciences as well as major companies Hewlett-Packard and ARKEMA and an SME, Beneq Oy.

Related information

<table>
<thead>
<tr>
<th>Result In Brief</th>
<th>Novel nanotubes made of more than one type of atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Summaries</td>
<td>Final Report Summary - BNC TUBES (Novel, heteroatomic boron, nitrogen and carbon nanotubes)</td>
</tr>
</tbody>
</table>
Coordinator
AALTO-KORKEAKOULUSAATIO
Otakaari, 1
00076 AALTO
Finland
See on map

Administrative contact: Esko KAUPPINEN
Tel.: +35-89470-28250
E-mail

Participants
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)
Rue Michel-Ange 3
PARIS
France

Administrative contact: Annick LOISEAU
Tel.: +33-0146734453
Fax: +33-0146734155
E-mail

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
University Offices, Wellington Square
OXFORD
United Kingdom

Administrative contact: Nicole GROBERT
Tel.: +44-1865273672
Fax: +44-1865283333
E-mail

FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX DE NAMUR
Rue de Bruxelles 61
NAMUR / NAMEN
Belgium

Administrative contact: Henrard LUC
Tel.: +32-81725485
Fax: +32-81724707
E-mail
ARKEMA FRANCE SA
4-8 Cours Michelet
PUTEaux
France

Administrative contact: Daniel BERNARD
Tel.: +33-0149007873
Fax: +33-0149005407
E-mail

HEWLETT-PACKARD (MANUFACTURING) LIMITED
Liffey Park Tech Campus, Barnhall Road
LEIXLIP CO KILDARE
Ireland

Administrative contact: Barry HOGAN
Tel.: +353-1-6151586
Fax: +353-1-6150712
E-mail

BENEQ OY
Ensimmäinen Savu
VANTAA
Finland

Administrative contact: Tommi VAINIO
Tel.: +358-400999669
Fax: +358-934243222
E-mail

OULUN YLIOPISTO
Pentti Kaiiteran katu 1
8000 OULU
Finland

Administrative contact: Kari LAASONEN
Tel.: +358-85531640
Fax: +358-85531603
E-mail

NATURAL SCIENCES CENTER OF A.M. PROKHOROV GENERAL PHYSICS INSTITUTE OF RUSSIAN ACADEMY OF SCIENCES
38 Vavilov Street
MOSCOW
Russia

Administrative contact: Elena OBRAZTSOVA
Tel.: +7-4951328206
Fax: +7-4951353002
E-mail