CORDIS
EU research results

CORDIS

English EN

Advanced Amorphous Multicomponent Oxides for Transparent Electronics

Project information

Grant agreement ID: 228144

Status

Closed project

  • Start date

    1 January 2009

  • End date

    31 December 2014

Funded under:

FP7-IDEAS-ERC

  • Overall budget:

    € 2 250 000

  • EU contribution

    € 2 250 000

Hosted by:

FACULDADE DE CIENCIAS E TECNOLOGIADA UNIVERSIDADE NOVA DE LISBOA

Portugal

Objective

Imagine having a fully transparent and flexible, foldable, low cost, displays or at the glass window of your home/office, a transparent electronic circuit, do you believe on that? Maybe you are asking me if I am writing science fiction. No I am not. In fact this is a very ambitious objective but is tangible in the framework of this project due to the already acquired experience in the development of transparent thin film transistors using novel multifunctional and multicomponent oxides that can behave as active or passive semiconductor materials. This is an interdisciplinary research project aiming to develop a new class of transparent electronic components, based on multicomponent passive and active oxide semiconductors (n and p-types), to fabricate the novel generation of full transparent electronic devices and circuits, either using rigid or flexible substrates. The emphasis will be put on developing thin film transistors (n and p-TFTs) and integrated circuits for a broad range of applications (from inverters, C-MOS like devices, ring oscillators, CCDs backplanes for active matrices, biossensor arrays for DNA/RNA/proteins detection), boosting to its maximum their electronic performances for next generation of invisible circuits. By doing so, we are contributing for generating a free real state electronics that is able to add new electronic functionalities onto surfaces, which currently are not used in this manner and that silicon cannot contribute. The multicomponent metal oxide materials to be developed will exhibit (mainly) an amorphous or a nanocomposite structure and will be processed by PVD techniques like rf magnetron sputtering at room temperature, compatible with the use of low cost and flexible substrates (polymers, cellulose paper, among others). These will facilitate a migration away from tradition silicon like fab based batch processing to large area, roll to roll manufacturing technology which will offer significant advantages

Principal Investigator

Elvira Fortunato (Prof.)

Host institution

FACULDADE DE CIENCIAS E TECNOLOGIADA UNIVERSIDADE NOVA DE LISBOA

Address

Quinta Da Torre
2829 516 Caparica

Portugal

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 2 250 000

Principal Investigator

Elvira Fortunato (Prof.)

Administrative Contact

Luis Gaspar (Dr.)

Beneficiaries (1)

FACULDADE DE CIENCIAS E TECNOLOGIADA UNIVERSIDADE NOVA DE LISBOA

Portugal

EU Contribution

€ 2 250 000

Project information

Grant agreement ID: 228144

Status

Closed project

  • Start date

    1 January 2009

  • End date

    31 December 2014

Funded under:

FP7-IDEAS-ERC

  • Overall budget:

    € 2 250 000

  • EU contribution

    € 2 250 000

Hosted by:

FACULDADE DE CIENCIAS E TECNOLOGIADA UNIVERSIDADE NOVA DE LISBOA

Portugal