Biochemically Equivalent Substitutive Technology for Stem Cells

From 2009-07-01 to 2012-12-31, closed project

Project details

<table>
<thead>
<tr>
<th>Total cost:</th>
<th>Topic(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUR 3 983 495,40</td>
<td>HEALTH-2007-1.4-7 - Development of stem cell culture conditions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EU contribution:</th>
<th>Call for proposal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUR 2 999 067</td>
<td>FP7-HEALTH-2007-B</td>
</tr>
<tr>
<td></td>
<td>See other projects for this call</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinated in:</th>
<th>Funding scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom</td>
<td>CP-FP - Small or medium-scale focused research project</td>
</tr>
</tbody>
</table>

Objective

Current technology to control embryonic and adult stem cell behaviour is dependent on conventional in vitro culture systems and crude factors such as serum and purified proteins, often sourced from vertebrate animal tissue. These factors contribute to variations in cell properties and differentiation potential which impact on the efficacy of cell culture. More worryingly these factors are potential avenues for the introduction of unknown or known pathogens with the capacity to infect transplant recipients thereby becoming communicable to the general population. Especially concerning is the opportunity for transmission of potentially lethal diseases across vertebrate species for which there are no known cures. The propensity of primitive stem cell populations to spontaneously differentiate is an added challenge which generally necessitates cumbersome manipulation of cells by skilled operators involving daily assessment, media replenishment and or cell passaging by physical dissociation. Realising the promise of stem cells and their derivatives for clinical and industrial applications therefore requires the evolution of new paradigms for cell culture which maximise chemical definition, minimise the involvement of skilled operators, and offer non-invasive modulation of cells by biocompatible means. The aim of this proposal is to discover and integrate with established and new cell culture technology, synthetic and non-vertebrate derived purified molecules with a capacity to mimic the functional properties of crude biological reagents currently used to control the behaviour of embryonic and adult stem cells, most notably affecting self-renewal, pluripotency, lineage specification and stability following cryopreservation. These will be validated to deliver new culture paradigms designed for compliance with Good Manufacturing Practice Standards necessary for the delivery of clinical grade cells for therapeutic use.

Related information

<table>
<thead>
<tr>
<th>Result In Brief</th>
<th>Enhancing human stem cell culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Summaries</td>
<td>Final Report Summary - BEST-STEM CELLS (Biochemically equivalent substitutive technology for stem cells)</td>
</tr>
</tbody>
</table>
Coordinator

THE UNIVERSITY OF EDINBURGH
OLD COLLEGE, SOUTH BRIDGE
EH8 9YL EDINBURGH
United Kingdom

Activity type: Higher or Secondary Education Establishments

Administrative contact: Angela Noble
Tel.: +44 131 650 9024
Fax: +44 131 650 9023

Participants

Roslin Cells Ltd.
C/o Roslin Foundation, Wallace Building, Roslin BioCentre
EH25 9PP Roslin, Midlothian
United Kingdom

Activity type: Research Organisations

Administrative contact: Kathryn Reilly
Tel.: +44 131 658 5180

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
RUE MICHEL ANGE 3
75794 PARIS
France

Activity type: Research Organisations

Administrative contact: Nadine Brochet
Tel.: +33 472 445 690
Fax: +33 472 728 080
INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
RUE DE TOLBIAC 101
75654 PARIS
France
See on map

Activity type: Research Organisations

Administrative contact: Dominique Pella
Tel.: +33 472 13 88 02
Fax: +33 472 13 88 01
Contact the organisation

EU contribution: EUR 240 534

UNIVERSITAETSKLINIKUM BONN
VENUSBERG-CAMPUS 1
53127 BONN
Germany
See on map

Activity type: Higher or Secondary Education Establishments

Administrative contact: Beate Gieselmann
Tel.: +49 228 287 19454
Fax: +49 228 287 14635
Contact the organisation

EU contribution: EUR 447 600

BIONEER A/S
KOGLE ALLE 2
2970 HOERSHOLM
Denmark
See on map

Activity type: Research Organisations

Administrative contact: Lars Hagsholm Pedersen
Tel.: +4545160444
Fax: +4545160455
Contact the organisation

EU contribution: EUR 154 950

UNIVERSITE DE LIEGE
PLACE DU 20 AOUT 7
4000 LIEGE
Belgium
See on map

Activity type: Higher or Secondary Education Establishments

Administrative contact: Isabelle Halleux
Tel.: +32 4 366 54 28
Fax: +32 4 366 55 58
Contact the organisation

EU contribution: EUR 98 400
EU contribution: EUR 68 190

United Kingdom

See on map

Activity type: Private for-profit entities (excluding Higher or Secondary Education Establishments)

Administrative contact: Charles Bavington
Tel.: +44 1631 559370
Fax: +44 1631 559010
Contact the organisation

Subjects
Biotechnology - Medical biotechnology

Last updated on 2019-08-01
Retrieved on 2019-08-16

© European Union, 2019