Skip to main content
European Commission logo print header

Cosmological tests of gravity

Objectif

Over the last few decades, astronomers and cosmologists have accumulated vast amounts of data clearly demonstrating that our current theories of fundamental particles and of gravity are inadequate to explain the observed discrepancy between the dynamics and the distribution of the visible matter in the Universe. This is called the mass/energy discrepancy problem.

To account for observations, two seemingly different forms of matter have been proposed: Dark Matter and Dark Energy. A Dark Matter particle still remains undetected and predicts that the inner regions of galaxies are denser than observed. Dark Energy introduces further complications and it lacks a compelling physical understanding. Given that the law of gravity plays such a crucial role at every instance where discrepancies have been observed, it is possible that the phenomena commonly attributed to Dark Matter and Dark Energy are actually a different theory of gravity in disguise.

In the proposed project I will critically examine the gravitational field on cosmological scales. I will devise a consistent parameterization framework, valid on linear and non-linear scales. I shall use this framework to firmly distinguish effects due to gravity from those that can only be attributed to Dark Matter or to Dark Energy, using highly accurate cosmological observations. Finally, I shall study actual theories of gravity and assess their theoretical and observational viability.

The mass/energy discrepancy is the most important problem of cosmology. A discovery that this discrepancy is due to gravity (or not) would have far-reaching implications on theories of cosmological structure formation, theories where gravity is unified with other forces, quantum gravity, and the cosmological constant problem in quantum field theory.
My project will not only add definitive knowledge of how galaxies such as ours came to be and how they are held together but also about the eventual fate of the universe.

Appel à propositions

FP7-PEOPLE-2010-RG
Voir d’autres projets de cet appel

Coordinateur

THE UNIVERSITY OF NOTTINGHAM
Contribution de l’UE
€ 100 000,00
Adresse
University Park
NG7 2RD Nottingham
Royaume-Uni

Voir sur la carte

Région
East Midlands (England) Derbyshire and Nottinghamshire Nottingham
Type d’activité
Higher or Secondary Education Establishments
Contact administratif
Paul Cartledge (Mr.)
Liens
Coût total
Aucune donnée