Skip to main content
European Commission logo print header

Light-In, Light-Out: Chemistry for sustainable energy technologies

Obiettivo

The project is concerned with a coordinated approach to the development of of novel chemical strategies for light harvesting by photovoltaic cells and light generation using light emitting electrochemical cells. Both technologies have proof of principle results from the PIs own laboratory and others world-wide. The bulk of efficient dye sensitized solar cells rely on transition metal complexes as the photoactive component as the majority of traditional organic dyes do not possess long term stability under the operating conditions of the devices. LECs based upon transition metal complexes have been shown to possess lifetimes sufficiently long and efficiencies sufficiently high to become a viable alternative technology to OLEDs in the near future. The disadvantages of state of the art devices for both technologies is that they are based upon second or third row transition metal complexes. Although these elements are expensive, the principle difficulties arise from their low abundance, which creates significant issues of sustainability if the technology is to be adopted. The aim of this project is three-fold. Firstly, to further optimise the individual technologies using conventional transition metal complexes, with increases in efficiency leading to lower metal requirements. Secondly, to explore the periodic table for metal-containing luminophores based on first row transition metals, with an emphasis upon copper and zinc containing species. The final aspect is related to the utilization of solar derived electrons for water splitting reactions, allowing the generation of hydrogen and/or reaction products of hydrogen with organic species. This latter aspect is related to the mid-term requirement for liquid fuels, regardless of the primary fuel sources utilized. The program will involve design and synthesis of new materials, device construction and evaluation (in-house and with existing academic and industrial partners) and iterative refinement of structures

Invito a presentare proposte

ERC-2010-AdG_20100224
Vedi altri progetti per questo bando

Meccanismo di finanziamento

ERC-AG - ERC Advanced Grant

Istituzione ospitante

UNIVERSITAT BASEL
Contributo UE
€ 2 399 440,00
Indirizzo
PETERSPLATZ 1
4051 Basel
Svizzera

Mostra sulla mappa

Regione
Schweiz/Suisse/Svizzera Nordwestschweiz Basel-Stadt
Tipo di attività
Higher or Secondary Education Establishments
Contatto amministrativo
Kurt Kamber (Dr.)
Ricercatore principale
Edwin Charles Constable (Prof.)
Collegamenti
Costo totale
Nessun dato

Beneficiari (1)