PHOTOBIOFUEL

Project ID: 260661
Funded under: FP7-IDEAS-ERC

Direct photobiological conversion of solar energy to volatile transport fuels

From 2011-01-01 to 2015-12-31, closed project

Project details

<table>
<thead>
<tr>
<th>Total cost:</th>
<th>EUR 916 119,90</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU contribution:</td>
<td>EUR 916 119,90</td>
</tr>
<tr>
<td>Coordinated in:</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Topic(s):</td>
<td>ERC-SG-LS9 - ERC Starting Grant - Applied life sciences and biotechnology</td>
</tr>
<tr>
<td>Call for proposal:</td>
<td>ERC-2010-StG_20091118</td>
</tr>
<tr>
<td>Funding scheme:</td>
<td>ERC-SG - ERC Starting Grant</td>
</tr>
</tbody>
</table>

Objective

The aim is to integrate photosynthetic solar energy conversion and synthesis of volatile engine-ready transport fuel in a single photobiological process. The focus is placed on the construction of phototrophic model systems for synthesis of the short-chain alkane propane (C3H8). Propane can be used in existing engines without further chemical conversion and can be easily recovered from the production process without destructive harvesting and extraction. However, no commercial biological production process exists and there is no known metabolic pathway for short-chain alkane biosynthesis. The intention is to construct a synthetic pathway for propane biosynthesis. In order to facilitate the construction, alkane biosynthetic pathways are studied in detail and genes encoding key-enzymes are isolated from diverse organisms.

In order to directly capture solar energy to drive fuel biosynthesis, the synthetic pathways are assembled in the photosynthetic model organism Synechocystis sp. PCC 6803. Native host metabolism is thereafter optimized to maximize the delivery of metabolic precursors and reducing energy to the synthetic pathways. In order to facilitate strain construction, cyanobacterial host strains are optimized for metabolic engineering and hydrocarbon fuel biosynthesis.

The project has the ultimate aim to generate cyanobacteria strains that synthesize short-chain alkane using only light, CO2 and H2O as substrate. The project has a clear applied target with high potential for socio-economical impact and a high risk / high gain character.

Related information

Report Summaries

Final Report Summary - PHOTOBIOFUEL (Direct photobiological conversion of solar energy to volatile transport fuels)

Principal Investigator

Patrik Raymond Jones
Tel.: +44 207 594 3056
Fax: +44 207 594 3056
E-mail
Host Institution

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ LONDON
United Kingdom

EU contribution: EUR 334,188,60

Activity type: Higher or Secondary Education Establishments

Administrative contact: Brooke Alasya
Tel.: +44 207 594 1181
Fax: +44 207 594 1418

E-mail
Contact the organisation

Beneficiaries

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ LONDON
United Kingdom

EU contribution: EUR 334,188,60

Activity type: Higher or Secondary Education Establishments

Administrative contact: Brooke Alasya
Tel.: +44 207 594 1181
Fax: +44 207 594 1418

E-mail
Contact the organisation

TURUN YLIOPISTO

YLEPISTONMAKI
20014 Turku
Finland

Activity type: Higher or Secondary Education Establishments

Administrative contact: Mari Riipinen
Tel.: +358 2 3336054
Fax: +358 2 3336363

E-mail
Contact the organisation

To know more

http://erc.europa.eu/

Subjects

Agricultural biotechnology - Biotechnology - Life Sciences - Medical biotechnology - Medicine and Health

Last updated on 2017-05-29