CORDIS
EU research results

CORDIS

English EN

Electroosmosis for Desiccant Regeneration - Innovation Technology for air-conditioning

Project information

Grant agreement ID: 272410

Status

Closed project

  • Start date

    20 October 2011

  • End date

    19 October 2012

Funded under:

FP7-PEOPLE

  • Overall budget:

    € 140 340

  • EU contribution

    € 140 340

Coordinated by:

THE UNIVERSITY OF NOTTINGHAM

United Kingdom

Objective

This fellowship application is to bring a leading researcher to the UK to transfer knowledge and skills and develop a novel technology of desiccant dehumidification and low energy desiccant regeneration using electroosmosis techniques. Dr Tian’s expertise in electroosmosis techniques will complement the existing knowledge on low energy air conditioning systems at the University of Nottingham and will fuel further development in this area through a long-term partnership of international standing. The fellow will work at the University of Nottingham for 12 month to further develop the technology for next generation air-conditioning systems suitable for low carbon buildings. Knowledge transfer will be arranged by the University of Nottingham through patent application, research seminars and workshops (conferences) involving industrial companies and SMEs. Electroosmosis (EO) is a liquid flow through capillaries in a porous EO material, which is driven by EO force with an external electric field. When the EO material is placed in contact with an electrolyte, Si-O on its internal surface dissociates to act on regions of net charge that diffuse ions to form the electric double layer (EDL). The electroosmosis can be used to regenerate the solid desiccant in the THICAC (temperature and humidity independent control air-conditioning) system. The wide range applications of high efficient THICAC system with the desiccant dehumidification are imperative in order to suppress the increasing energy consumption in HVAC systems around the world. The solid desiccant dehumidification with the novel regeneration method is needed urgently, especially in small air conditioning units to popularize the THICAC energy saving technology. However, the EO regeneration for solid desiccant is less investigated so far and further research should be carried out.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Coordinator

THE UNIVERSITY OF NOTTINGHAM

Address

University Park
Ng7 2rd Nottingham

United Kingdom

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 140 340

Administrative Contact

Paul Cartledge (Mr.)

Project information

Grant agreement ID: 272410

Status

Closed project

  • Start date

    20 October 2011

  • End date

    19 October 2012

Funded under:

FP7-PEOPLE

  • Overall budget:

    € 140 340

  • EU contribution

    € 140 340

Coordinated by:

THE UNIVERSITY OF NOTTINGHAM

United Kingdom