Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Exploring applications of spatial-map and velocity-map imaging mass spectrometry

Objective

Our aim is to develop a next-generation mass spectrometer with unique imaging capabilities. For each mass, the new instrument will image the complete velocity or spatial distribution of the ions at their point of formation. The velocity distributions of fragment ions are highly sensitive to the detailed dynamics of the fragmentation process, such that in velocity imaging mode the new instrument will provide a powerful alternative to conventional tandem mass spectrometry approaches for fragmentation studies. In addition to the mechanistic and structural information encoded the images, the set of photofragment velocity distributions constitutes a unique ‘fingerprint’ for the parent molecule that may be used in molecular identification. In spatial imaging mode, there are clear applications in the areas of surface analysis and high throughput sampling, both of which will be explored over the course of the project. The spectrometer will utilise the method of velocity/spatial-map imaging, a technique originally developed for studying the photofragmentation dynamics of small molecules. A standard velocity-map imaging measurement yields the detailed speed and angular distributions for a single fragment. However, by employing advanced detector technology, our instrument will be capable of recording such distributions for all fragments simultaneously, opening the way for the study of much larger molecules with complex fragmentation pathways. A working prototype of the spectrometer will be constructed within the first year of the project, with further developments and improvements taking place over the remaining four years. The instrument will be calibrated using results from previous studies, and its capabilities in both spatial and velocity-map imaging modes will then be explored using a number of carefully chosen chemical systems. These include fundamental dynamics studies, ultraviolet photodissociation of peptides, and imaging of biomolecules and single cells on surfaces.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2007-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
EU contribution
€ 1 499 969,00
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0