Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Nonlinear Micro- and Nano-Photonics: nonlinear optics at the micrometer scale and below

Objective

We will investigate, experimentally and theoretically, the dynamics of nonlinear optical waves at mesoscopic scales, ranging from several wavelengths (~10 microns) down to the sub-wavelength regime (~0.2 microns). Our studies will cover a variety of optical settings: from various kinds of periodic systems (photonic lattices) with and without disorder, to bulk materials and nano-suspensions. Under proper conditions, light propagating nonlinearly in these systems can display complex nonlinear dynamics, giving rise to a variety of fascinating phenomena. Perhaps the most intriguing are associated with the suspensions containing dielectric nano-spheres, upon which light acts, by virtue of the gradient force, to modify the local density of spheres, thereby varying the effective refractive index. We will use light to alter the properties of the fluid (e.g. surface-tension, viscosity), which, in turn, will affect the pattern of optical wave in space and time. We will study nonlinear optics coupled directly to nonlinear fluid dynamics. Our preliminary results demonstrate optically-induced convection and optically-driven waves in the fluid. In the same system, we will explore sub-wavelength optical spatial solitons. Our preliminary experimental results clearly show very narrow solitons, narrower than imaging optics can resolve. In another effort, we will explore arrays of sub-wavelength waveguides with a sharp index contrast, and will study a variety of nonlinear phenomena unique to such structures. Other efforts include linear and nonlinear wave phenomena in photonic lattices, such as Anderson localization of lightt, the optical realization of the famous Hofstadter butterfly, waves in honeycomb lattices exhibiting unique features arising from symmetry (diabolic points, Berry phase effects, backscattering, etc.), Anderson localization in quasi-crystals and in honeycomb structures, transport of solitons in random potentials, and more.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2008-AdG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
EU contribution
€ 2 100 000,00
Address
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0