Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

DNA methylation in stem cells

Objective

Embryonic and adult stem cells constitute an important component of biology by providing a pool of pluri- and multi-potent cells that supply a variety of different cell lineages. Little is known about the mechanisms involved in establishing and maintaining cell ¿stemness,¿ but it is most likely controlled by epigenetic signals such as DNA methylation. This proposal aims to understand these mechanisms and decipher the molecular logic used to program this plasticity.

We have developed a new strategy for studying the ¿DNA methylation potential¿ of any cell type throughout normal development. This utilizes a unique set of transgenic vectors programmed to detect both de novo methylation as well as the ability to protect CpG islands, and will, for the first time, allow one to evaluate the role of demethylation in normal stem cells and during reprogramming. This will be done using a new technique called ¿reverse epigenetics¿.

Preliminary studies indicate that embryonic stem cells differentiated in vitro undergo extensive aberrant methylation that does not reflect the normal pattern of methylation found in vivo. This artifact may be responsible for our inability to attain efficient differentiation in culture and may generate cells that are unhealthy and prone to cancer. We will characterize the causes of this phenomenon and decipher its underlying mechanism. This research should lead to the development of improved methods for tissue generation in vitro.

One of the most basic properties of adult stem cells is their ability to undergo asymmetric cell division that is often associated with unequal segregation of DNA. This mechanism is one of the most elemental, yet mysterious, aspects of stem cell biology. We have developed a completely new molecular model for this process that is based on the idea that non-symmetric DNA methylation serves as a strand-specific marker, and it is very likely that this will enable us to finally decipher this basic aspect of stem cells.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2010-AdG_20100317
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

THE HEBREW UNIVERSITY OF JERUSALEM
EU contribution
€ 1 941 930,00
Address
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 JERUSALEM
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0