Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Computational optogenetics for the characterization and control of cortical activity

Objective

Optogenetics provides a powerful tool with which to not only observe but also manipulate neuronal activity, due to the possibility it provides to spatially and temporally target subpopulations of neurons. Recently, the first reports have emerged of the co-expression of excitatory and silencing opsins within the same neuron population, providing the opportunity to control the balance of excitation and inhibition within neural circuits. However, this approach is currently limited by interactions between co-expressed opsins, which are suggested to be nonlinear. Correspondingly, this nonlinearity complicates the proposal of stimulation protocols for modulating neural activity. Thus although optogenetics progresses towards the use of co-activated opsins to modulate neural activity, the mechanisms underlying their interaction have not been studied. In this project, I propose to address the functional implications of this deficit by studying the co-activation of excitatory and silencing opsins from the level of single neurons, to their dual activation in networks. I will do this by combining two parallel approaches. Firstly, I will use experimental in vitro and in vivo models to study the effects of co-activated opsins in isolated neurons and networks respectively. Secondly, based on an underlying biophysical model of opsins, I will examine computer models of co-activated opsins in single cells and in a multiscale model of a cortical circuit. By combining findings from experimental and theoretical models, I will increase our understanding of the possibilities of co-activated opsins, whilst simultaneously providing suitable experimental and theoretical models with which to further explore the balance of excitation and inhibition in cortical networks. This research will be of great immediate benefit to optogenetics, and help define the future direction of this technique as an effective tool with which to study the role of excitation and inhibition within neural circuits.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
EU contribution
€ 221 606,40
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0