Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Structure of paramagnetic integral membrane metalloproteins by MAS-NMR

Project description

Novel method for structural characterisation of membrane proteins

Many human proteins are metalloproteins and require the binding of a metal or a metal-containing cofactor to function. Metalloproteins play a central role in metal ion transport, homeostasis, and redox reactions. Therefore, it is necessary to understand their molecular structure and biochemistry. Funded by the European Research Council, the P-MEM-NMR project aims to address the technical challenges associated with elucidating the structure and dynamics of integral membrane proteins. Researchers will optimise a recently pioneered magic-angle spinning nuclear magnetic resonance (MAS-NMR) method to unveil the structure-activity relationships in integral membrane metalloenzymes. The project will provide a widely applicable method for the structural characterisation of vital cellular processes, addressing contemporary challenges in molecular and chemical sciences.

Objective

Integral membrane metalloproteins are involved in the transport and homeostasis of metal ions, as well as in key redox reactions that have a tremendous impact on many fields within life sciences, environment, energy, and industry.
Most of our understanding of fine details of biochemical processes derives from atomic or molecular structures obtained by diffraction methods on single crystal samples. However, in the case of integral membrane systems, single crystals large enough for X-ray diffraction cannot be easily obtained, and the problem of structure elucidation is largely unsolved.
We have recently pioneered a breakthrough approach using Magic-Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) for the atomic-level characterization of paramagnetic materials and complex biological macromolecules. The proposed project aims to leverage these new advances through a series of new concepts i) to improve the resolution and sensitivity of MAS-NMR from nuclei surrounding a paramagnetic metal ion, such as e.g. cobalt, nickel and iron, and ii) to extend its applicability to large integral membrane proteins in lipid membrane environments. With these methods, we will enable the determination of structure-activity relationships in integral membrane metalloenzymes and transporters, by combining the calculation of global structure and dynamics with measurement of the electronic features of metal ions.
These goals require a leap forward with respect to today’s protocols, and we propose to achieve this through a combination of innovative NMR experiments and isotopic labeling, faster MAS rates and high magnetic fields. As outlined here, the approaches go well beyond the frontier of current research. The project will yield a broadly applicable method for the structural characterization of essential cellular processes and thereby will provide a powerful tool to solve challenges at the forefront of molecular and chemical sciences today.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-CoG

See all projects funded under this call

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 499 375,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 499 375,00

Beneficiaries (1)

My booklet 0 0