Objective
The shrinking size of microprocessors as well as the ubiquity of wireless communication have led to the proliferation of portable computing devices with novel security requirements. Whereas traditional security protocols achieve their security goals relying solely on cryptographic primitives like encryptions and hash functions, the
protocols employed to secure these devices establish and rely in addition on properties of the physical world.
For instance, they may use, as basic building blocks, protocols for ensuring physical proximity, secure
localisation, or secure neighbourhood discovery.
Unfortunately, we often hear about ill-conceived systems, and portable computing devices raise some serious concerns about privacy.To draw meaningful conclusions, the security analysis of these systems has to be done taking into account physical properties, such as transmission delay, network topology, and node positions. This contrasts sharply with
standard models used to analyse traditional protocols.
The main objective of the POPSTAR project is to develop foundations and practical tools to analyse modern security
protocols that establish and rely on physical properties. In particular, we will:
- devise models and develop techniques to make possible a rigorous analysis of cryptographic protocols that establish and
rely on physical properties;
- develop foundations and practical tools for formally verifying security properties, as well as privacy properties that play
a prominent role is many applications;
- experiment the developed techniques for analysing the security of modern contactless systems.
The POPSTAR project will significantly advance the use of formal verification to contribute to the security analysis of protocols that rely on physical properties. This project is bold and ambitious, and answers the forthcoming expectation from consumers and citizens for high level of trust and confidence about contactless nomadic devices.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware computer processors
- natural sciences physical sciences theoretical physics particle physics
- natural sciences mathematics pure mathematics topology
- natural sciences computer and information sciences computer security cryptography
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications telecommunications networks
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.