Community Research and Development Information Service - CORDIS


BioCircuit Report Summary

Project ID: 677313
Funded under: H2020-EU.1.1.

Periodic Reporting for period 1 - BioCircuit (Programmable BioMolecular Circuits: Emulating Regulatory Functions in Living Cells Using a Bottom-Up Approach)

Reporting period: 2016-08-01 to 2018-01-31

Summary of the context and overall objectives of the project

Living cells form the basis of life. Cells have evolved to process an enormous amount of chemical signals using dedicated molecular networks. However, because of the high complexity of the living cell, unraveling the design principles of these molecular networks has proven impossible. In this project, we have build molecular networks outside of the living cell with the objective of studying the design principles of molecular networks using a bottom-up approach. Such an approach can provide detailed answers on the way molecular networks are able to process information. This is important for society as malfunctioning of molecular networks in living cells can lead to diseases such as cancer. Therefore understanding how molecular networks achieve their function and how they fail is an important research question that is important for society.

Work performed from the beginning of the project to the end of the period covered by the report and main results achieved so far

In the first period, we designed several genetic circuits and tested the response of these circuits in silico. We have designed and tested the microfluidic devices that will be used to test run genetic programs outside of the living cell. In addition, we have cloned DNA constructs and tested them in cell lysate. In the next period, we will prototype the cell-free genetic circuits in our microfluidic flow reactors.

Progress beyond the state of the art and expected potential impact (including the socio-economic impact and the wider societal implications of the project so far)

Understanding the design principles of genetic circuits is currently extremely difficult due to the extreme complexity of the living cell. Our project will uncover basic principles of genetic circuits by reconstituting them outside the cell by combining cell-free protein synthesis and microfluidic flow reactors. Understanding the design principles of genetic circuits will allow us to better understand the origin of complex diseases like cancer.
Follow us on: RSS Facebook Twitter YouTube Managed by the EU Publications Office Top