Wspólnotowy Serwis Informacyjny Badan i Rozwoju - CORDIS

  • Komisja Europejska
  • CORDIS
  • Projekty i wyniki
  • Poznanie mechanizmów, za pomocą których bakterie bronią się przed wirusami, może otworzyć drogę do opracowania nowych metod leczenia infekcji bakteryjnych
H2020

PHAGECOM — Wynik w skrócie

Project ID: 660039
Źródło dofinansowania: H2020-EU.1.3.2.
Kraj: Zjednoczone Królestwo
Dziedzina: Zdrowie

Poznanie mechanizmów, za pomocą których bakterie bronią się przed wirusami, może otworzyć drogę do opracowania nowych metod leczenia infekcji bakteryjnych

Bakteriofagi, czyli wirusy, które infekują bakterie, stanowią bardzo interesującą domenę badań. Z jednej strony ich wpływ może powodować straty finansowe, ale jednocześnie można go wykorzystać do rozwoju metod leczenia. Naukowcy na nowo zainteresowali się zastosowaniem fagów jako terapii do zwalczania zakażeń bakteryjnych, co może mieć kluczowe znaczenie w walce z opornością na środki przeciwdrobnoustrojowe.
Poznanie mechanizmów, za pomocą których bakterie bronią się przed wirusami, może otworzyć drogę do opracowania nowych metod leczenia infekcji bakteryjnych
Bakterie mogą się bronić przed zakażeniem przez bakteriofagi za pomocą adaptacyjnego układu odpornościowego o nazwie CRISPR-Cas. Ten układ odpornościowy, który został odkryty dopiero w ostatniej dekadzie, jest obecny u około połowy znanych gatunków bakterii. Układ CRISPR-Cas działa poprzez włączanie małych fragmentów DNA („sekwencji rozdzielających”), pobranych z infekującego fagu do określonego miejsca w genomie bakteryjnym, tak zwanego locus CRISPR.

Fag zawierający taką samą sekwencję zostanie rozpoznany przez układ CRISPR-Cas i zniszczony, co oznacza, że bakteria jest teraz odporna na ten fag dzięki działaniu układu CRISPR-Cas. Niewiele wiadomo jednak o koewolucji fagów i tego układu odpornościowego. Główny badacz z zespołu projektu PHAGECOM finansowanego ze środków UE, dr Stineke van Houte, wyjaśnia: „szybka ewolucja układu odpornościowego CRISPR-Cas może być bardzo realnym problemem terapii fagowej, a zatem ustalenie, kiedy układ odpornościowy CRISPR-Cas ewoluuje i jak fagi radzą sobie z układem CRISPR-Cas znacznie ułatwi opracowywanie i optymalizowanie terapii fagowych oraz ocenę ich ograniczeń.

„Koewolucyjny wyścig zbrojeń”

Jednym z obszarów narażonych na straty finansowe spowodowane przez fagi, jest przemysł mleczarski, gdzie występuje ryzyko zakażenia bakterii wytwarzających jogurt. Uzyskanie wglądu w interakcje zachodzące pomiędzy nimi może pomóc w opracowaniu strategii zwalczania infekcji fagowych w przemyśle mleczarskim oraz w zaprojektowaniu skuteczniejszej terapii fagowej w celu leczenia zakażeń bakteryjnych u ludzi.

Głębsza analiza przyniosła zaskakujące wnioski, jak wyjaśnia dr van Houte: „pierwotnie zakładaliśmy, że będziemy świadkami znacznej koewolucji między bakteriami i fagami. Jednak prace projektowe wykazały, że bakterie powodowały wymieranie fagów w ciągu kilku dni od rozpoczęcia infekcji, a zatem nie występowała koewolucja.

Każda bakteria oporna na działanie układu CRISPR w populacji zawierała inną sekwencję rozdzielającą w swoim locus CRISPR, jak opisano powyżej. Zapobiega to mutacji fagów, dzięki której mogłyby normalnie pokonać jedną sekwencję rozdzielającą, i prowadzi do ich wyginięcia.

Jednak geny anty-CRISPR na genomach fagów mogą to zmienić. Geny anty-CRISPR kodują małe białka, które blokują układy CRISPR-Cas. Wyniki badań wykazały, że fagi zawierające geny anty-CRISPR nie są w stanie pokonać układu CRISPR-Cas, gdy działają same, ale udaje im się to, gdy działają wspólnie.

Nieoczekiwane odkrycia

Te dwa odkrycia to najważniejsze wyniki projektu. „Pierwsze ustalenie było nieoczekiwane, ponieważ, zgodnie z wiedzą na temat interakcji molekularnych między CRISPR-Cas i DNA fagów, oczekiwano, że bakterie i fagi będą intensywnie koewoluować. Drugie odkrycie jest ważne w mojej opinii, ponieważ dostarcza pierwszych informacji na temat konsekwencji działania układu anty-CRISPR na jego fagi i bakterie, które zakażają”, wyjaśnia dr van Houte.

Oprócz zabezpieczenia przed infekcjami fagowymi układ CRISPR-Cas może również chronić przed innymi pasożytami genetycznymi, takimi jak plazmidy, które są okrągłymi kawałkami „samolubnego” DNA zdolnymi do rozprzestrzeniania się między bakteriami. W ramach projektu PHAGECOM sprawdzono, czy systemy CRISPR-Cas mogą usuwać plazmidy ze społeczności drobnoustrojów.

Jak wyjaśnia dr van Houte, odkrycie to jest nie tylko interesujące z naukowego punktu widzenia, ale może być także użyteczne w wielu istotnych zastosowaniach. Wiele problemów, z jakimi obecnie borykamy się w związku z lekoopornymi bakteriami, wynika z rozprzestrzeniania się oporności na środki przeciwdrobnoustrojowe (AMR) za pośrednictwem plazmidów przenoszących się między bakteriami.

„Gdybyśmy mogli zaprojektować strategię dostarczania systemów CRISPR-Cas do społeczności drobnoustrojów zawierających geny AMR (np. w jelitach pacjenta cierpiącego na nawracające infekcje wywoływane chorobotwórczymi bakteriami), mogłoby to doprowadzić do opracowania nowych technologii w celu zmniejszenia poziomów AMR, a tym samym umożliwiłoby ich ponowne uczulenie na antybiotyki.

Wnioski z projektu pomagają badaczom zrozumieć, w jaki sposób fagi wchodzą w interakcje z gospodarzami bakterii opornych na CRISPR. „Jest to istotne dla różnych zastosowań, ale najważniejszym z nich jest terapia fagowa – coraz więcej osób zdaje sobie sprawę, że fagi mogą być niezwykle skutecznym sposobem kontrolowania infekcji bakteryjnych, szczególnie tam, gdzie nie działają antybiotyki”, mówi dr Stineke van Houte.

Słowa kluczowe

PHAGECOM, CRISPR-Cas, fagi, bakteriofagi, nabiał, bakterie, koewolucja, terapia fagowa, anty-CRISPR, oporność na środki przeciwdrobnoustrojowe
Śledź nas na: RSS Facebook Twitter YouTube Zarządzany przez Urząd Publikacji UE W górę