Forschungs- & Entwicklungsinformationsdienst der Gemeinschaft - CORDIS

Transgenic Xenopus line containing gene trap transposons

Our approach for mobilizing gene trap transposons in vivo was to generate two types of transgenic lines; one expressing the SB transposase specificically in the male germline, and the other set of lines contain the gene trap transposons in the genome of the animals. These two lines are crossed together and, in the male progeny that contain both sets of transgenes, the gene trap transposon is mobilized in the male germline and these "hops" are revealed in the next generation (i.e. his progeny).

Thus double transgenic males are crossed to wild type females and the progeny are screened for novel gene trap insertions. In order to easily identify which animals contain each transgene, we generated each set of transgenic lines linked to different eye colour markers. Specifically, we generated the transgenic lines expressing the transposase linked to a transgene containing the gamma-crystallin promoter driving green fluorescent protein (GFP). These transgenic lines are easily identified by having green eyes. The lines that contain the gene trap transposons are linked to the gamma-crystallin promoter driving red fluorescent protein (RFP). These transgenic lines are easily identified by having red eyes.

When the two sets of lines are crossed with each other, those that are transgenic for both transgenes will express a combination of green and red in their eyes, which is detected as yellow eyes. We generated many transgenic lines containing the different gene gene trap transposons, all of them marked with red eyes. Out of these we were able to show that we could mobilize these transposons, either by injecting RNA encoding the transposase or by crossing these lines with the transgenic lines expressing the SB transposase in the male germline. These gene trap transposon lines are of great benefit for all labs intersted in performing insertional mutagenesis screens in Xenopus tropicalis.

Reported by

University of Cambridge
Wellcome Trust / Cancer Research UK Gurdon Institute
CB2 1QN Cambridge
United Kingdom
Folgen Sie uns auf: RSS Facebook Twitter YouTube Verwaltet vom Amt für Veröffentlichungen der EU Nach oben