Service Communautaire d'Information sur la Recherche et le Développement - CORDIS

Data and knowledge sharing and support system for integration of human with robots

Integration of the autonomous robots and humans entities addresses not only a standard concept for tele-presence and tele-operation but utterly novel hybrid approach for data and knowledge sharing. Since in this concept, robots and humans cooperate and coordinate their activity on the same level being equal partners in the given task, they also simultaneously profit from their different nature and abilities.

The common data and knowledge representation is used mainly for cooperative localization and mapping, cooperative planning and data sharing. For the data and knowledge sharing the new types of map was designed. The standard for search and rescue map (SRM) is a proposal for standard map to be used in fire or rescue situations. It would be stored in the database of the local rescue center where rescue personnel can download the according SRM after an alarm. SRM consists of object layers presenting relevant information for fire and rescue tasks. The target is that the a-priori information containing ground plan and some additional important information like location of dangerous or flammable materials is generated already when a building is planned and it will be available in digital form.

During the operation the perceived information from team members in place is continuously updated in the map. In order to keep the SRM as simple as possible the map is divided into a digitised ground plan (base layer) and several object layers, which are presented as a database.

SRM is an enhanced version of fire rescue map that is used nowadays in buildings, which have straight fire alarm connection to alarm control center. The map includes the ground plan of the building, exits, fire alarm board, sprinkler center, sprinkler cover map, and location of toxic and flammable materials. Map includes more information for the firemen, but on the other hand the existing information is already too much on the same paper/display. For example, the important sprinkler map partially overlays the ground plan and makes it difficult to be read. By using layer type structure it is possible to limit the visible information according to certain rules or on demand of the user.

In telepresence system it is necessary to share an actual global model of the environment and an actual position of all the entities for the purpose of mutual localization. Unfortunately, information on actual position of other entities within a global map of the environment is not sufficient for determination of actual position of a lost entity. To localize itself, based on the information from other entities, it is necessary to develop a technique allowing finding distances to other entities. Knowing the distance to other entities it is possible to recalibrate entity position using triangulation methods.

To accomplish the cooperation task it becomes important to define actual states of entities (e.g. busy, free, need_help, helping_to, searching ...). On the other hand the mechanism of data storage depends on the above mentioned communication model, i.e. whether the most of the information will be stored in operation center or if the data will be distributed among entities and stored locally. The main question in communication is which data is subject to exchange directly between entities and which data are to be shared through the operation center. Generally, the following important actual-type of information that should be shared among entities were identified: Global map of the environment, Position in a global map, Path plans, Operating states of entities.

Informations connexes

Reported by

Sanderring 2
See on map