Forschungs- & Entwicklungsinformationsdienst der Gemeinschaft - CORDIS

Demonstration of visible and near-infrared light emission from lanthanide doped polymer waveguides

Tyndall and Nanocomms have developed polymer-based planar and multimode waveguides doped with organo-lanthanide complexes for emission in the visible and the near-infrared.

Planar waveguides incorporating Eu and Er complexes as luminescent dopants were fabricated using a novel UV-processable fluorinated polymer. Thin films doped with each of the complexes were fabricated and their spectroscopic properties investigated. The films act as low loss multi-mode planar waveguides capable of guiding visible and near infrared light emitted following optical excitation of the lanthanide dopants. Judd-Ofelt parameters were calculated for the Eu complex dopants and effects of the polymer host environment on the photophysical properties of the chelates were identified. The radiative properties of the Eu complexes were also determined viz. their potential for use in optical amplification applications.

Multi-mode planar channel waveguides, doped with Eu(dbm)3(Phen), and Er(dbm)3(Phen) complexes, were fabricated by polymer hot embossing. A low-viscosity UV-processable host material, ethylene glycol dimethacrylate (EGDMA), with high optical transparency across the visible and near infrared spectral range is used as the waveguide matrix, while the thermoplastic, optically transparent polymethylmethacrylate (PMMA) material is used as an embossed substrate and superstrate material.

The optical properties of the polymer materials were investigated and the filled, embossed structures were demonstrated to act as multi-mode channel waveguides capable of successfully guiding visible and near infrared light emitted following optical excitation of the organo-lanthanide dopants. In order to demonstrate the versatility of the hot embossing process with regard to integrated optics, further multilevel-embossed organo-lanthanide doped waveguides were fabricated with self-aligned integrated optical fibres, which were shown to successfully couple waveguided luminescence. We believe that this is the first time lanthanide complexes have been incorporated in hot embossed, polymer waveguide devices.

Verwandte Informationen

Reported by

9 Mardyke Parade
Folgen Sie uns auf: RSS Facebook Twitter YouTube Verwaltet vom Amt für Veröffentlichungen der EU Nach oben