Wspólnotowy Serwis Informacyjny Badan i Rozwoju - CORDIS

Simulation parameters influencing ego-motion and spatial presence

This result represents the essence of POEMS and describes the optimal parameters of a lean and elegant ego motion simulator, whose goal is to allow creating a convincing sense of presence in a virtual world, without the drawbacks of the usual full motion simulators that require vast amounts of space, money, and expertise. To achieve these optimal parameters, we studied how each of the visual, vestibular, auditory, and somato-sensory cues help give us more information about our motions through environments, and identified, for each of them, the minimum amount of realism required to significantly enhance a virtual experience.

We have found that all of them are useful, but to different extents. Visual cues, for example, are the most important, as they give us most information about our position relative to our environment. We found a clear advantage to the use of realistic, coherent 3D scenes. Furthermore, we deduce that in order to build a compelling sense of presence, a significant portion of the budget needs to be spent on the projection system, such as the incorporation of a D-ILA projector.

We also recommend using a curved screen with a field of view as large as possible. Audio is the second most critical sensory system in simulators. The use of proper localized sounds is highly recommended, as it has proved to improve the sense of vection and convincingness. Furthermore, proper sound can be used in place of a large FOV, as specialized sound yields the same effects as mono sound with a larger field of view. HRTFs based 3D sound positioning is now available on very cheap consumer sound cards, and should by all means be incorporated in an lean and elegant, yet low cost simulator. Regarding somato-sensory information, the installation of transducers under the seat is a great and rather cheap way of greatly improving the feeling of self-motion.

Complementary to this, short physical accelerations by abruptly displacing the seat of the observer by distances as short as a centimeter can be used to replace the large hydraulic systems that are often used to physically move large simulators. There is preliminary evidence that such information can possibly be used to trade off some of the visual field of view, while obtaining a similar overall convincingness and vection intensity and onset time.

Reported by

Applied Acoustics, Chalmers University of Technology
Sven Hultins gata 8A
SE-41296 Göteborg
See on map
Śledź nas na: RSS Facebook Twitter YouTube Zarządzany przez Urząd Publikacji UE W górę