Service Communautaire d'Information sur la Recherche et le Développement - CORDIS

Knowledge about the effect of test meals differing in post meal glycaemia on cognitive functions

The aim of the work was to find useful methods to study potential differences in cognitive function during the postprandial period after starchy test meals differing in post meal glycaemia. In addition, the aim was to study cognitive performance in relation to glucose tolerance status. Test meals were designed to give rise to different postprandial blood glucose increments. Cognitive tests of working memory (WM) were performed repeatedly during the 3 h postprandial phase. A test of selective attention (SA) was also included. The cognitive tests were performed in healthy volunteers.

In summary, the cognitive tests used (WM and SA) allowed discrimination of cognitive performance as related to differences in postprandial glycaemia. A breakfast that had the capacity to maintain a higher net increment in blood glucose in the later postprandial period, i.e. a low-GI breakfast, showed an advantage on cognitive performance compared with a high-GI breakfast. After adjusting for glucose tolerance, the subjects performed significantly better in the later postprandial period during low-GI condition in both the WM-test and the test of SA compared with the high-GI condition. But, even though a low-GI breakfast seemed to be preferable for the cognitive functions over all, a high GI-breakfast showed to enhance the learning capacity. Thus, it was found that the learning capacity was enhanced when the first learning occasion was performed when the blood glucose increment was most elevated, i.e. in the early postprandial period after the high-GI breakfast. Also, the results showed that the individual glucose tolerance has an important influence on cognitive performance. The subjects with higher glucose tolerance performed better in the cognitive tests, and we therefore suggest that the cognitive performance can be affected by glucose regulation even if the glucose tolerance is within the normal range.

The results in the project may result in new knowledge about what foods or meals that is preferable with respect to cognitive functions in the postprandial period, and also provide useful tools to design foods with desirable effects on glycaemic excursion and cognitive function. The results are being prepared for scientific publication.

Reported by

Applied Nutrition and Food Chemistry, Lund University
Getingevägen 60
221 00 Lund
See on map