Wspólnotowy Serwis Informacyjny Badan i Rozwoju - CORDIS

Final Activity Report Summary - NEAL-TYPE (Non-extensional and linear models for Dependent Type Theory)

This project has established, for the first time, a link between two previously unconnected areas of mathematics: dependent type theory and higher-dimensional category theory. Dependent type theory is a branch of mathematics which deals with the following question: to what extent can the proofs that mathematicians work with be carried out by a computer? It does so by considering a mathematical statement as a specification for computer programs, and a proof of that statement as an implementation of the corresponding specification. For example, here is a typical mathematical statement: 'There exist infinitely many primes.' Through the lens of dependent type theory, this is translated into the following specification: 'A program which, when you give it a number, computes another number which is larger than the input and is prime.' From this perspective, a proof that there are infinitely many primes is just a program implementing this specification.

On the other hand, higher-dimensional category theory is a kind of meta-mathematics. Let us first note that the objects which are studied in pure mathematics generally represent real-world phenomena. For example, the collection of ways in which you can rotate a Rubik's cube is represented by the mathematical notion of a 'group', which is defined to be any collection of operations which can be composed together and also undone; whilst the everyday notion of a shape is captured by the mathematical notion of 'topological space'. Category theory is a little different, because the notion of 'category' does not represent real-world phenomena, but instead mathematical ones. Informally, a category is a kind of mathematical universe. Higher-dimensional categories are a special kind of mathematical universe particularly suitable for representing mathematical objects which 'look like topological spaces'.

Intuitively, it is clear that there is a mathematical universe which is 'the universe of dependent type theory', or 'the universe of mathematics as done by a computer', and so we should expect to be able to build a category which represents this universe. This is indeed the case; but the novelty of this project has been to show that what we obtain is not only a category but also a higher-dimensional category. On the one hand, this tells us something about dependent type theory: that its objects of study in some sense 'look like topological spaces'. On the other, it tells us something about higher-dimensional category theory, by allowing us to talk about it using the language of intensional type theory.

Reported by

UPPSALA UNIVERSITET
751 05 UPPSALA
Sweden
See on map
Śledź nas na: RSS Facebook Twitter YouTube Zarządzany przez Urząd Publikacji UE W górę