European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Novel miniature machine tool design and realization for next generation high performance micro-components: A coupled-dynamic modelling and simulation approach

Cel

The demand for micromachining is currently increasing with the reduced device dimensions in medical, electronics, aerospace and defense fields. As nanotechnology advances in leaps and bounds, the mechanical interface of these devices becomes more critical. Unfortunately, the techniques of micromachining have not been able to keep up with the advances in nanotechnology. This disparity between the two provides an opportunity for research. To bridge this gap, new techniques in micromachining need to be created

Machine choice is a critical step in the micromachining. The rigidity of the machine tool is important as the small vibrations are amplified relative to the smaller tool diameter (e.g. vibration of 0.001 mm is a much larger fraction (1%) of a 0.10 mm end mill) and reduce the precision and damage tools

In contrast to large machine tools, meso-scale machine tools (MMT) are apt due to their small footprint, reduced energy consumption and less cost. However, the manufacture of MMT is at its nascent stage. The existing approaches considers the dynamics of machine tool subsystems individually, which can not represent the performance of machine tool in operation
Hence, in this work, a generic framework is proposed for building of high performance MMTs based on coupled simulation approach that consider the dynamics of - integrated MMT, controller and machining process, without building the prototype. This approach will reduce time and cost of manufacture and increases the performance of machining
The model of the existing MMT is developed by including the model of proposed novel dampers and the performance will be improved by coupled dynamics simulations. This approach is validated by physically modifying the existing design of MMT with suggested changes by simulations. From the gained knowledge, a generic framework will be developed for building of MMT and will be demonstrated
The training activities include development of technical (multibody dynamics, machine tool d

Zaproszenie do składania wniosków

FP7-PEOPLE-2010-IEF
Zobacz inne projekty w ramach tego zaproszenia

Koordynator

KUNGLIGA TEKNISKA HOEGSKOLAN
Wkład UE
€ 185 964,80
Adres
BRINELLVAGEN 8
100 44 Stockholm
Szwecja

Zobacz na mapie

Region
Östra Sverige Stockholm Stockholms län
Rodzaj działalności
Higher or Secondary Education Establishments
Kontakt administracyjny
Claudia Hakanen (Ms.)
Linki
Koszt całkowity
Brak danych