Project description
Dust particle surfaces collect a lot more than dust
Cosmic dust makes up a very small portion of the interstellar (IS) medium, yet it plays a very big role in the evolution of our universe. The sticky tar-like surfaces of dust grains are like tiny chemical factories, bringing together atoms that might otherwise not meet and catalysing reactions. Given their critical role in the molecular diversity of the universe, scientists have studied the chemical reactions on the surface of IS dust grains with astrophysical spectroscopy, lab experiments and mathematical models. The EU-funded QUANTUMGRAIN project plans to shed new light on dust grain chemistry, overcoming the limitations of current methodologies by exploiting state-of-the-art quantum chemistry simulations. Outcomes will answer important questions about the types of reactions favoured and why, and the role of the IS dust grain surface in facilitating them. Ultimately, simulations could elucidate a molecular description of the reactions themselves.
Objective
The Universe is molecularly rich, comprising from the simplest molecule (H2), to complex organic molecules (e.g. NH2CHO) and biomolecules (e.g. amino acids). The physical phases involved in a Solar-type planetary system formation go hand-in-hand with an increase in molecular complexity, which is ultimately connected with the origin of life. Interstellar (IS) grains play a key role in this chemical evolution as they provide surfaces where key chemical reactions occur. The IS grain chemistry is not fully understood yet. Spectroscopic astronomical observations combined with astrochemical modelling and laboratory experiments have dedicated great efforts to this end but they are still severally limited at reproducing, characterizing and, ultimately, understanding truly existing IS surface reactions. The QUANTUMGRAIN project aims to overcome such limitations by adopting a fourth approach: new state-of-the-art quantum chemistry simulations. These simulations will provide unique, unprecedented information at a molecular level (structures, energetics and dynamics) of the physico-chemical processes occurring in IS surface reactions, with the final objective to fully unveil the actual chemistry on IS grains. To achieve this objective QUANTUMGRAIN is based on three pillars: i) construction of realistic atom-based structural models for IS grains to characterize their structural, energetic and spectroscopic features, ii) molecular simulation of crucial on-grain reactions (formation of simple molecules, complex organic molecules and biomolecules) to disentangle the most favourable mechanisms, and iii) assessment of the actual role of IS grains in each reaction (catalyst? concentrator? third body?) to know why their presence is fundamental. My ambition is to have a complete, accurate molecular description of the different elementary physico-chemical steps involved in IS surface reactions, with the ultimate goal to definitely unveil in a comprehensive way the IS grain chemistry.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- agricultural sciences agriculture, forestry, and fisheries agriculture grains and oilseeds
- natural sciences biological sciences biochemistry biomolecules
- natural sciences chemical sciences physical chemistry quantum chemistry
- natural sciences chemical sciences organic chemistry amines
- natural sciences physical sciences astronomy planetary sciences
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08193 Cerdanyola Del Valles
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.